精英家教网 > 高中数学 > 题目详情
1.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=$\frac{4}{3}$a.
(1)求$\frac{b}{a}$;
(2)若c2=a2+$\frac{1}{4}$b2,求角C.

分析 (Ⅰ)利用正弦定理化简已知的等式,整理后利用同角三角函数间的基本关系化简,得到sinB=2sinA,
再利用正弦定理化简,即可得到所求式子的值;
(2)由余弦定理可求cosC的值,结合C的范围即可得解.

解答 解:(1)△ABC中,asinAsinB+bcos2A=$\frac{4}{3}$a,
由正弦定理化简得:sin2AsinB+sinBcos2A=$\frac{4}{3}$sinA,
即sinB(sin2A+cos2A)=$\frac{4}{3}$sinA,
∴sinB=$\frac{4}{3}$sinA,
再由正弦定理得:b=$\frac{4}{3}$a,
则$\frac{b}{a}$=$\frac{4}{3}$;
(2)由(1)可得b=$\frac{4}{3}$a,
c2=a2+$\frac{1}{4}$b2=a2+$\frac{1}{4}$×$\frac{16}{9}$a2=$\frac{13}{9}$a2
由余弦定理可得:
cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{a}^{2}+{\frac{16}{9}a}^{2}-{\frac{13}{9}a}^{2}}{2×a×\frac{4}{3}a}$=$\frac{1}{2}$,
由C为三角形内角,可得∠C=$\frac{π}{3}$.

点评 此题考查了正弦、余弦定理,同角三角函数间的基本关系,以及余弦函数的单调性,熟练掌握定理是解本题的关键,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.将函数f(x)=$\sqrt{3}$sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则y=g(x)的一条对称轴是(  )
A.$x=-\frac{π}{6}$B.$x=-\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在△ABC中,已知AB=2,AC=6,∠BAC=60°,点D,E分别在边AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=5$\overrightarrow{AE}$,
(1)若$\overrightarrow{BF}$=-$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{10}$$\overrightarrow{AC}$,求证:点F为DE的中点;
(2)在(1)的条件下,求$\overrightarrow{BA}$•$\overrightarrow{EF}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个生物研究性学习小组,为了研究平均气温与一天内某豆类胚芽生长之间的关系,他们分别记录了4月6日至4月11日的平均气温x(℃)与该豆类胚芽一天生长的长度y(mm),得到如下数据:
日期4月6日4月7日4月8日4月9日4月10日4月11日
平均气温x(℃)1011131286
一天生长的长度y(mm)222529261612
该小组的研究方案是:先从这六组数据中选取6日和11日的两组数据作为检验数据,用剩下的4组数据即:7日至10日的四组数据求出线性回归方程.
(1)请按研究方案求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)用6日和11日的两组数据作为检验数据,并判断该小组所得线性回归方程是否理想.(若由线性回归方程得到的估计数据与所选的检验数据的误差不超过1mm,则认为该方程是理想的)
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,多面体ABCDPE的底面ABCD是平行四边形,AD=AB=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,则二面角A-PB-E的大小为(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a=${∫}_{0}^{{e}^{2}-1}$$\frac{1}{x+1}$dx,则二项式(x2-$\frac{a}{x}$)9的展开式中常数项为5376.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.九江气象台统计,5月1日浔阳区下雨的概率为$\frac{4}{15}$,刮风的概率为$\frac{2}{15}$,既刮风又下雨的概率为$\frac{1}{10}$,设A为下雨,B为刮风,那么P(A|B)=(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$mx2+1,g(x)=2lnx-(2m+1)x-1(m∈R),且h(x)=f(x)+g(x)
(1)若函数h(x)在(1,f(1))和(3,f(3))处的切线互相平行,求实数m的值;
(2)求h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2+tx+t,?x∈R,f(x)>0,函数g(x)=3x2-2(t+1)x+t,则“?a,b∈(0,1)使得g(a)=g(b)=0”为真命题的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案