精英家教网 > 高中数学 > 题目详情
甲、乙两名射击运动员在某次测试中各射击20次,两人的测试成绩如表
甲的成绩 乙的成绩
环数 7 8 9 10 环数 7 8 9 10
频数 6 4 4 6 频数 4 6 6 4
s1,s2分别表示甲乙两名运动员在这次测试中成绩的标准差,
.
x1
.
x2
分别表示甲、乙两名运动员这次测试中成绩的平均数,则有(  )
A、
.
x1
.
x2
,s1>s2
B、
.
x1
=
.
x2
,s1>s2
C、
.
x1
=
.
x2
,s1=s2
D、
.
x1
.
x2
,s1>s2
分析:分别做出甲的平均成绩和乙的平均成绩,两个人的平均成绩相等,分别做出两个人的方差,甲的方差大于乙的方差即甲的标准差大于乙的标准差.
解答:解:甲的平均成绩是
7×6+8×4+9×4+10×6
20
=8.5,
乙的平均成绩是
7×4+8×6+9×6+10×4
20
=8.5,
乙的方差是2.25×0.2+0.25×0.3+0.25×0.3+2.25×0.2=1.05,
甲的方差是2.25×0.3+0.25×0.2+0.25×0.2+2.25×0.3=1.225,
∴甲和乙的平均成绩相等,甲的方差比乙的方差大即甲的标准差比乙的标准差大,
故选B.
点评:本题考查一组数据的平均数和标准差,对于两组数据这是最常见的一种题目,分别用这两个特征数来表示数据的特点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环)
10 8 9 9 9
10 10 7 9 9
如果甲、乙两人只有1人入选,则入选的应是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

17、甲、乙两名射击运动员进行射击选拔比赛,已知甲、乙两运动员射击的环数稳定在6,7,8,9,10环,其射击比赛成绩的分布列如下:
甲运动员:

乙运动员:

(Ⅰ)若甲、乙两运动员各射击一次,求同时击中9环以上(含9环)的概率;
(Ⅱ)若从甲、乙两运动员中只能挑选一名参加某项国际比赛,你认为让谁参加比赛较合适?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次运动会中甲、乙两名射击运动员各射击十次的成绩(环)如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲,乙两个人的成绩;
(2)分别计算两个样本的平均数
.
x
和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环),如果甲、一两人中只有1人入选,计算他们的平均成绩及方差.问入选的最佳人选应是谁?
10 8 9 9 9
10 10 7 9 9

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名射击运动员,甲命中10环的概率为
1
2
,乙命中10环的概率为p,若他们各射击两次,甲比乙命中10环次数多的概率恰好等于
7
36
,则p=
2
3
2
3

查看答案和解析>>

同步练习册答案