分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式,进而利用三角函数周期公式即可计算得解.
(Ⅱ)由角的范围,利用正弦函数的单调性即可得解.
解答 解:(I)∵$f(x)=4cos?x•sin({?x+\frac{π}{4}})(?>0)$
=$2\sqrt{2}cosωx(sinωx+cosωx)=\sqrt{2}(sin2ωx+cos2ωx+1)=2sin(2ωx+\frac{π}{4})+\sqrt{2}$,
∴$\frac{2π}{2ω}=π,可得:ω=1$.
∴$f(x)=2sin(2x+\frac{π}{4})+\sqrt{2},ω=1$.
(Ⅱ)∵$当x∈[0,\frac{π}{2}]时,(2x+\frac{π}{4})∈[\frac{π}{4},π+\frac{π}{4}],令2x+\frac{π}{4}=\frac{π}{2}解得x=\frac{π}{8}$;
∴$y=f(x)在[0,\frac{π}{8}]上单调递增;在[\frac{π}{8},\frac{π}{2}]上单调递减$.
点评 本题主要考查了三角函数恒等变换的应用,三角函数周期公式,正弦函数的单调性的综合应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 13 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,0),r=3 | B. | (3,0),r=3 | C. | (-3,0),r=3 | D. | (3,0)r=9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com