精英家教网 > 高中数学 > 题目详情

【题目】已知函数,过曲线上的点处的切线方程为

(1)若函数处有极值,求的解析式;

(2)在(1)的条件下,求函数在区间上的最大值.

【答案】(1)(2)13。

【解析】

(1)由f(x)=x3+ax2+bx+c求导数,利用导数几何意义结合切线方程及函数f(x)在x=-2时有极值即可列出关于a,b,c的方程,求得a,b,c的值,从而得到f(x)的表达式.
(2)先求函数的导数f′(x),通过f′(x)>0,及f′(x)<0,得出函数的单调性,进一步得出函数的最值即可.

(1)依题意,,且

,解得

(2)由(1)知

,得

∴当时,为增函数;当时,为减函数.

时取极大值,

又∵

∴函数在区间上的最大值为13.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”,为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:

由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且有很强的线性相关关系.

(1)求关于的线性回归方程;(结果保留三位小数);

(2)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;

(3)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?

参考数据:.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有”“”“”“四个字,有放回地从中任取一个小球,取到就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生14之间取整数值的随机数,且用1234表示取出小球上分别写有”“”“”“四个字,以每两个随机数为一组,代表两次的结果.经随机模拟产生了20组随机数:

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

据此估计,直到第二次就停止概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)在极坐标系中,过点作曲线的切线,求直线的极坐标方程.

2)已知直线为参数)恒经过椭圆为参数)的右焦点

①求的值;

②设直线与椭圆交于两点,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与直线相切且与圆外切。

(1)求圆心的轨迹的方程;

(2)设第一象限内的点在轨迹上,若轴上两点,满足. 延长分别交轨迹两点,若直线的斜率,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月份上合峰会在青岛召开,面向高校招募志愿者,中国海洋大学海洋环境学院的8名同学符合招募条件并审核通过,其中大一、大二、大三、大四每个年级各2名.若将这8名同学分成甲乙两个小组,每组4名同学,其中大一的两名同学必须分到同一组,则分到乙组的4名同学中恰有2名同学是来自于同一年级的分组方式共有__________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为探索课堂教学改革,惠来县某中学数学老师用传统教学和导学案两种教学方式,在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图.记成绩不低于70分者为成绩优良”.

Ⅰ)分析甲、乙两班的样本成绩,大致判断哪种教学方式的教学效果更佳,并说明理由;

Ⅱ)由以上统计数据完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为成绩是否优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

参考公式:,其中是样本容量.

独立性检验临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:

分组

男生人数

2

16

19

18

5

3

女生人数

3

20

10

2

1

1

若将平均每日参加体育锻炼的时间不低于120分钟的学生称为锻炼达人”.

1)将频率视为概率,估计我校7000名学生中锻炼达人有多少?

2)从这100名学生的锻炼达人中按性别分层抽取5人参加某项体育活动.

①求男生和女生各抽取了多少人;

②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将宽和长都分别为x的两个矩形部分重叠放在一起后形成的正十字形面积为注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形

y关于x的函数解析式;

xy取何值时,该正十字形的外接圆面积最小,并求出其最小值.

查看答案和解析>>

同步练习册答案