精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足,对任x、y∈R均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(2)=4,则f(x)在[-2012,-100]上的最大值为
-200
-200
分析:通过赋值法,可证得y=f(x)为奇函数,且在R上单调递增,f(-2n)=nf(-2),从而可求得f(x)在[-2012,-100]上的最大值.
解答:解:令x=y=0得:f(0+0)=f(0)+f(0),
∴f(0)=0;
令y=-x得f(-x)+f(x)=f(0)=0,即f(-x)=-f(x),
∴y=f(x)为奇函数;
∵当x>0时,f(x)>0,
∴当x1<x2时,x2-x1>0,f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)>0,
∴y=f(x)在R上单调递增.
∴f(x)在[-2012,-100]上的最大值为f(-100).
∵f(2)=4,
∴f(-2)=-4,
∴f(-2-2)=f(-2)+f(-2)=2f(-2)=-4,即f(-4)=-8,
同理可得f(-6)=3f(-2)=-12
…,
f(-2n)=nf(-2),
∴f(-100)=50f(-2)=-200.
∴f(x)在[-2012,-100]上的最大值为-200.
故答案为:-200.
点评:本题考查抽象函数及其应用,着重考查赋值法的应用,考查函数奇偶性与单调性的判定,考查转化思想与推理运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案