精英家教网 > 高中数学 > 题目详情
已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数.
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值.
(1)∵z1=log2(2x+1)+ki,z2=1-xi
∴z1•z2=[log2(2x+1)+ki]•(1-xi)
=[log2(2x+1)+kx]+[k-x•log2(2x+1)+ki]i
f(x)=log2(2x+1)+kx
设定义域R中任意实数,由函数f(x)是偶函数
得:f(-x)=f(x)恒成立
∴log2(2x+1)-kx=log2(2x+1)+kx
2kx=log2
2-x-1
2x+1
)=-x
(2k+1)x=0
得:k=-
1
2

(2)由(1)可知f(x)=log2(2x+1)-
1
2
x,
所以y=f(log2x)=log2(x+1)-
1
2
log2x=log2
x+1
x
=
log(
x
+
1
x
)2

所以x∈(0,a],a>0,a∈R时,
ymin=
log2(
a
+
1
a
)(0<a≤1)
1(a>1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•上海模拟)已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数.
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记f(x)=Re(z1•z2
(1)试写出f(x)关于x的函数解析式
(2)若函数f(x)是偶函数,求k的值
(3)求证:对任意实数m,由(2)所得函数y=f(x)的图象与直线y=
12
x+m的图象最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年上海市十三校高三(下)第二次联考数学试卷(文科)(解析版) 题型:解答题

已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数.
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值.

查看答案和解析>>

科目:高中数学 来源:2008年上海市奉贤区高考数学一模试卷(理科)(解析版) 题型:解答题

已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记f(x)=Re
(1)试写出f(x)关于x的函数解析式
(2)若函数f(x)是偶函数,求k的值
(3)求证:对任意实数m,由(2)所得函数y=f(x)的图象与直线y=x+m的图象最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源:奉贤区一模 题型:解答题

已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记f(x)=Re(z1•z2
(1)试写出f(x)关于x的函数解析式
(2)若函数f(x)是偶函数,求k的值
(3)求证:对任意实数m,由(2)所得函数y=f(x)的图象与直线y=
1
2
x+m的图象最多只有一个交点.

查看答案和解析>>

同步练习册答案