精英家教网 > 高中数学 > 题目详情
过圆x2+y2=1上一点P作圆的切线与x轴和y轴分别交于A,B两点,O是坐标原点,则|
OA
+2
OB
|的最小值是
3
3
分析:设∠OBP=α,由O<α<
π
2
,∠OAP=
π
2
-α,知|
OA
+2
OB
|=|(
1
cosα
2
sinα
)|然后利用向量的模以及基本不等式求出表达式的最小值即可.
解答:解:设∠OAP=α,
∵O<α<
π
2
,∠OBP=
π
2
-α,
OA
=(
1
cosα
,0)
2
OB
=(0,
2
sinα
)

∴|
OA
+2
OB
|=|(
1
cosα
2
sinα
)|=
(
1
cosα
)2+(
2
sinα
)2
=
sin2α+4cos2α
sin2αcos2α

=
sin4α+4cos4α+5sin2αcos2α
sin2αcos2α

=
tan2α+
4
tan2α
+5

9
=3,当且仅当tan2α=
4
tan2α
时,表达式取得最小值.
故答案为:3.
点评:本题考查直线和圆的方程的应用,是基础题.解题时要认真审题,仔细解答,注意合理地运用均值不等式进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过圆x2+y2=1上一点作切线与x轴,y轴的正半轴交于A、B两点,则|AB|的最小值为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2=1上一点P作圆的切线与x轴和y轴分别交于A,B两点,O是坐标原点,则OA+8•OB的最小值是
2
65
2
65

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南京市四区县高三(上)联考数学试卷(解析版) 题型:填空题

过圆x2+y2=1上一点P作圆的切线与x轴和y轴分别交于A,B两点,O是坐标原点,则|+2|的最小值是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南京市四区县高三(上)联考数学试卷(解析版) 题型:填空题

过圆x2+y2=1上一点P作圆的切线与x轴和y轴分别交于A,B两点,O是坐标原点,则|+2|的最小值是   

查看答案和解析>>

同步练习册答案