分析 由已知得Sn+1-Sn=SnSn+1,S1=a1=-1,从而得到{$\frac{1}{{S}_{n}}$}是首项为-1,公差为-1的等差数列,进而求出Sn=-$\frac{1}{n}$,由此能求出an.
解答 解:∵数列{an}的前n项和为Sn,a1=-1,an+1=SnSn+1(n∈N*),
∴Sn+1-Sn=SnSn+1,S1=a1=-1,
∴$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=-1,$\frac{1}{{S}_{1}}$=-1,
∴{$\frac{1}{{S}_{n}}$}是首项为-1,公差为-1的等差数列,
∴$\frac{1}{{S}_{n}}$=-1+(n-1)×(-1)=-n.
∴Sn=-$\frac{1}{n}$,
∴当n≥2时,an=Sn-Sn-1=-$\frac{1}{n}+\frac{1}{n-1}$=$\frac{1}{n(n-1)}$,
n=1时,不成立,∴an=$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com