精英家教网 > 高中数学 > 题目详情

设f(x)=lg(10x+1)+ax是偶函数,g(x)=数学公式是奇函数,那么a+b的值为________.


分析:由题意可得f(-x)=f(x)对任意的x都成立,代入整理可求a,由g(x)=是奇函数,结合奇函数的 性质可知g(0)=0,代入可求b,从而可求a+b
解答:∵f(x)=lg(10x+1)+ax是偶函数
∴f(-x)=f(x)对任意的x都成立
∴lg(10x+1)+ax=lg(10-x+1)-ax
=lg(10x+1)-x
∴(2a+1)x=0
∴2a+1=0

∵g(x)=是奇函数
∴g(0)=1-b=0
∴b=1

故答案为:
点评:本题主要考查了奇偶函数的定义的应用,解题中要善于利用奇函数的性质f(0)=0(0在该函数的定义域内)可以简化基本运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=lg(
2
1-x
+a)是奇函数,则使f(x)>0的x的取值范围是(  )
A、(-1,0)
B、(0,1)
C、(-∞,0)
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山西模拟)设f(x)=lg(10x+1)+ax是偶函数,g(x)=
4x-b
2x
是奇函数,那么a+b的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg(10x+1)+ax是偶函数,那么a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg(10x+1)+ax是偶函数,g(x)=
4x-b
2x
是奇函数,那么a+b的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg(ax2-2x+a),
(1)若f(x)的定义域为R,求实数a的取值范围.
(2)若f(x)的值域为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案