精英家教网 > 高中数学 > 题目详情
已知:正方体ABCDA1B1C1D1棱长为a

(1) 求证:平面A1BD∥平面B1D1C

(2) 求平面A1BD和平面B1D1C的距离.

 

答案:
解析:

证明:(1) 在正方体ABCDA1B1C1D1中,

BB1平行且等于DD1

∴ 四边形BB1D1D是平行四边形,

BDB1D1

BD∥平面B1D1C

同理 A1B∥平面B1D1C

A1BBD=B

∴ 平面A1BD∥平面B1D1C

解:(2) 连AC1交平面A1BDM,交平面B1D1CN

ACAC1在平面AC上的射影,又ACBD

AC1BD

同理可证,AC1A1B

AC1⊥平面A1BD,即MN⊥平面A1BD

同理可证MN⊥平面B1D1C

MN的长是平面A1BD到平面B1D1C的距离,

ACBD交于E,则平面A1BD与平面A1C交于直线A1E

M∈平面A1BDMAC1平面A1C

MA1E

同理NCF

在矩形AA1C1C中,由平面几何知识得

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:
(1)AE与平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在正方体ABCD-A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG=
14
CD.
(I)求证:EF⊥B1C;
(Ⅱ)求EF与C1G所成角的余弦值;
(Ⅲ)求二面角F-EG-C1的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)已知:正方体ABCD-A1B1C1D1的棱长为1.
(Ⅰ)求棱AA1与平面A1BD所成的角;
(Ⅱ)求二面角B-A1D-B1的大小;
(Ⅲ)求四面体A1-BB1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位正方体ABCD-A1B1C1D1对棱BB1,DD1上有两个动点E、F,BE=D1F,设EF与面AB1所成角为α,与面BC1所成角为β,则α+β的最大值为
 

查看答案和解析>>

同步练习册答案