精英家教网 > 高中数学 > 题目详情
(2012•长春一模)“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点x0”的(  )
分析:我们可以根据充分、充要条件的定义进行判断.
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
解答:解:∵a<-2,f(x)=ax+3,
∴f(0)=3>0,f(2)=2a+3<2×(-2)+3=-1<0,f(0)•f(2)<0
∴函数f(x)=ax+3在区间[-1,2]上存在零点x0
∴a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点x0”的充分条件;
反之,若函数f(x)=ax+3在区间[-1,2]上存在零点,则f(-1)•f(2)≤0,即(-a+3)(2a+3)≤0解得a≤-
3
2
或a≥3

∴a<-2不是“函数f(x)=ax+3在区间[-1,2]上存在零点的必要条件.
故选A.
点评:本题考查充分、充要条件的判断方法,我们可以根据充分、充要条件的定义进行判断,解题的关键是零点存在性定理的正确使用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长春一模)设集合A={x||x|≤2,x∈R},B={y|y=-x2,-1≤x≤2},则?R(A∩B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)选修4-4:坐标系与参数方程
在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为(2,
π
3
)

(1)求圆C的极坐标方程;
(2)P是圆C上一动点,点Q满足3
OP
=
OQ
,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)选修4-5:不等式选讲
已知函数f(x)=|x-1|+|2x+2|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若不等式f(x)<a(a∈R)的解集为空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)若复数(a+i)2在复平面内对应的点在y轴负半轴上,则实数a的值是(  )

查看答案和解析>>

同步练习册答案