精英家教网 > 高中数学 > 题目详情

已知椭圆的方程为:,其焦点在轴上,离心率.

(1)求该椭圆的标准方程;

(2)设动点满足,其中M,N是椭圆上的点,直线OM与ON的斜率之积为,求证:为定值.

(3)在(2)的条件下,问:是否存在两个定点,使得为定值?

若存在,给出证明;若不存在,请说明理由.

 

【答案】

(1)由,解得

故椭圆的标准方程为.          ……………………3分

(2)设,

则由,得

∵点M,N在椭圆上,∴ ……6分

分别为直线的斜率,由题意知,

,∴,    ……………………8分

          

(定值)            ……………………10分

(3)由(2)知点是椭圆上的点,

∴该椭圆的左右焦点满足为定值,

因此存在两个定点,使得为定值。

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆Γ的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)为Γ的三个顶点.
(1)若点M满足
AM
=
1
2
(
AQ
+
AB
)
,求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若k1k2=-
b2
a2
,证明:E为CD的中点;
(3)设点P在椭圆Γ内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,点P的坐标是(-8,-1),若椭圆Γ上的点P1、P2满足
PP1
+
PP2
=
PQ
,求点P1、P2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若△PQM为正三角形,则椭圆的离心率等于
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程为
x2
16
+
y2
25
=1
,则此椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0),离心率e=
2
2
,F1,F2分别是椭圆的左、右焦点,过椭圆的左焦点F1且垂直于长轴的直线交椭圆于M、N两点,且|MN|=
2

(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l与椭圆相交于P,Q两点,O为原点,且OP⊥OQ.试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程为
x2
3
+
y2
4
=1,则该椭圆的焦点坐标为(  )
A、(0,±1)
B、(0,±
7
C、(±1,0)
D、(±
7
,0)

查看答案和解析>>

同步练习册答案