设函数其中
(1)若=0,求的单调区间;
(2)设表示与两个数中的最大值,求证:当0≤x≤1时,||≤.
(1),函数f(x)的单调增区间是(-∞,)及(1,+∞) .单调减区间是
(2)根据导数判定单调性,进而得到最值,然后来证明结论。
【解析】
试题分析:解:(1)由=0,得a=b.
当时,则,不具备单调性 ..2分
故f(x)= ax3-2ax2+ax+c.
由=a(3x2-4x+1)=0,得x1=,x2=1. 3分
列表:
x |
(-∞,) |
(,1) |
1 |
(1,+∞) |
|
+ |
0 |
- |
0 |
+ |
|
f(x) |
增 |
极大值 |
减 |
极小值 |
增 |
由表可得,函数f(x)的单调增区间是(-∞,)及(1,+∞) .单调减区间是…5分
(2)当时,=
若 ,
若,或,在是单调函数,≤≤,或
≤≤ 7分
所以,≤
当时,=3ax2-2(a+b)x+b=3.
①当时,则在上是单调函数,
所以≤≤,或≤≤,且+=a>0.
所以. 9分
②当,即-a<b<2a,则≤≤.
(i) 当-a<b≤时,则0<a+b≤.
所以 ==≥>0.
所以 . 11分
(ii) 当<b<2a时,则<0,即a2+b2-<0.
所以=>>0,即>.
所以 . 13分
综上所述:当0≤x≤1时,||≤. 14分
考点:导数的运用
点评:主要是对于导数再研究函数中的运用,通过判定单调性,极值来得到最值,进而求解,属于中档题。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com