精英家教网 > 高中数学 > 题目详情

某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据

x
6
8
10
12
y
2
3
5
6
请画出上表数据的散点图; (要求 : 点要描粗
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。
(相关公式:

(Ⅰ)如图:

┄┄┄┄┄┄┄┄3分                                                                                                                                      
(Ⅱ)
(Ⅲ)记忆力为9的同学的判断力约为4。

解析试题分析:(Ⅰ)如图:

┄┄┄┄┄┄┄┄3分                                                                                                                                      
(Ⅱ) =62+83+105+126="158" ,=
=

故线性回归方程为.               ┄┄┄┄┄┄┄┄10分
(Ⅲ)由回归直线方程预测,记忆力为9的同学的判断力约为4. ┄┄┄┄12分
考点:本题主要考查散点图,线性回归直线方程的求法,回归直线方程的应用。
点评:基础题,根据点的坐标,绘制散点图,是简单问题,理解概念即可操作。求回归系数,思路明确,计算麻烦,细心即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某单位为了提高员工素质,举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如图所示的茎叶图(单位:分),分数在175分以上(含175分)者定为“运动健将”,并给予特别奖励,其他人员则给予“运动积极分子”称号.

(1)若用分层抽样的方法从“运动健将”和“运动积极分子”中抽取10人,然后再从这10人中选4人,求至少有1人是“运动健将”的概率;
(2)若从所有“运动健将”中选3名代表,求所选代表中女“运动健将”恰有2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某大学高等数学老师上学期分别采用了两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如下:

(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”

 
甲班
乙班
合计
优秀
 
 
 
不优秀
 
 
 
合计
 
 
 
下面临界值表仅供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:其中) 
(Ⅳ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记为这2人所得的总奖金,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据

x
 
6
 
8
 
10
 
12
 
y
 
2
 
3
 
5
 
6
 
(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。
(相关公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格);
(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在+(不含80)之间,属于酒后驾车;在(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如下表:

(1)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);

(2)求检测数据中醉酒驾驶的频率;
(3)估计检测数据中酒精含量的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102, 101, 99, 98, 103, 98, 99;
乙:110, 115, 90, 85, 75, 115, 110。
(Ⅰ)这种抽样方法叫做什么抽样方法?
(Ⅱ)将这两组数据用茎叶图表示出来;
(Ⅲ)将两组数据比较:说明哪个车间的产品较稳定。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次实验,得到数据如下:

零件的个数x(个)
2
3
4
5
加工时间y(小时)
2.5
3
4
4.5
(1)作出散点图;
(2)求出关于的线性回归方程
(3)预测加工10个零件需要多少小时?
注:可能用到的公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:
性别与对景区的服务是否满意  单位:名

 


总计
满意
50
30
80
不满意
10
20
30
总计
60
50
110
(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关
注:
临界值表:
P()
0.05
0.025
0.010
0.005

3.841
5.024
6.635
7.879

查看答案和解析>>

同步练习册答案