精英家教网 > 高中数学 > 题目详情
在某次抽奖活动中,获奖者甲面临两种选择:(1)获奖金750元;(2)从装有10张标有奖金的纸牌中一次性地抽取3张,这10张纸牌中8张标有200元,2张标有500元,这样做,他所获得的奖金数额等于所抽3张纸牌上的奖金额之和,他应如何选择获奖方案?
解:设第二种选择中获奖金数额为ξ元,
随机变量ξ的可能取值为600,900,1 200, 
①ξ=600,表示从10张牌中抽出3张标有200元的牌,
P(ξ
②ξ=900,表示从10张牌中抽出2张标有200元的牌和1张有500元的牌,

③ξ=1200表示从10张牌中抽出2张标有500元的纸牌和1张标有200元的牌,

ξ的分布列为

所以E(ξ)=
故该人应该选第二种方案。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次抽奖活动中,假设某10张券中有一等奖1张,可获价值200元的奖品;有二等奖2张,每张可获价值100元的奖品;有三等奖3张,每张可获价值50元的奖品;其余4张没有奖,某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一次抽奖活动中,假设某10张券中有一等奖1张,可获价值200元的奖品;有二等奖2张,每张可获价值100元的奖品;有三等奖3张,每张可获价值50元的奖品;其余4张没有奖,某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京五中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

在一次抽奖活动中,假设某10张券中有一等奖1张,可获价值200元的奖品;有二等奖2张,每张可获价值100元的奖品;有三等奖3张,每张可获价值50元的奖品;其余4张没有奖,某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的分布列和期望.

查看答案和解析>>

同步练习册答案