某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号 |
性别 |
投篮成绩 |
2 |
男 |
90 |
7 |
女 |
60 |
12 |
男 |
75 |
17 |
男 |
80 |
22 |
女 |
83 |
27 |
男 |
85 |
32 |
女 |
75 |
37 |
男 |
80 |
42 |
女 |
70 |
47 |
女 |
60 |
甲抽取的样本数据
编号 |
性别 |
投篮成绩 |
1 |
男 |
95 |
8 |
男 |
85 |
10 |
男 |
85 |
20 |
男 |
70 |
23 |
男 |
70 |
28 |
男 |
80 |
33 |
女 |
60 |
35 |
女 |
65 |
43 |
女 |
70 |
48 |
女 |
60 |
乙抽取的样本数据
(Ⅰ)观察乙抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
|
优秀 |
非优秀 |
合计 |
男 |
|
|
|
女 |
|
|
|
合计 |
|
|
10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中)
(Ⅰ)=.
(Ⅱ)有95%以上的把握认为投篮成绩与性别有关.
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 采用分层抽样方法比系统抽样方法更优.
【解析】
试题分析:(Ⅰ)首先明确“事件”记“两名同学中恰有一名不优秀”为事件A,乙抽取的样本数据中,男同学有4名优秀,记为a,b,c,d,2名不优秀,记为e,f . 计算从男同学中抽取两名,总的基本事件有15个,利用列举法确定事件A包含的基本事件数为8,进一步得到=. (Ⅱ)设投篮成绩与性别无关,由乙抽取的样本数据,得列联表,利用“卡方公式”,计算的观测值并与临界值表比较,得到结论.(Ⅲ)对照系统抽样、分层抽样的定义.确定抽样方法,由(Ⅱ)的结论,并且从样本数据能看出投篮成绩与性别有明显差异,得到结论.
试题解析:(Ⅰ)记“两名同学中恰有一名不优秀”为事件A,乙抽取的样本数据中,男同学有4名优秀,记为a,b,c,d,2名不优秀,记为e,f . 1分
乙抽取的样本数据,若从男同学中抽取两名,则总的基本事件有15个, 2分
事件A包含的基本事件有,,,, ,,,,共8个基本事件,所以 =. 4分
(Ⅱ)设投篮成绩与性别无关,由乙抽取的样本数据,得列联表如下:
|
优秀 |
非优秀 |
合计 |
男 |
4 |
2 |
6 |
女 |
0 |
4 |
4 |
合计 |
4 |
6 |
10 |
6分
的观测值4.4443.841, 8分
所以有95%以上的把握认为投篮成绩与性别有关. 9分
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 10分
由(Ⅱ)的结论知,投篮成绩与性别有关,并且从样本数据能看出投篮成绩与性别有明显差异,因此采用分层抽样方法比系统抽样方法更优. 12分
考点:1、古典概型概率的计算,2、抽样方法,3、“卡方公式”的应用.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河南省洛阳市高三上学期期末考试理科数学 题型:选择题
为欢庆元旦,某校高三年级一班、二班于12月30日在本班同时举办元旦文艺晚会,现有6名任课教师全部分配到这两班和同学们一起联欢,且每班最多安排4名教师,则不同的安排方法有
A.50种 B.70种 C.35种 D.55种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com