精英家教网 > 高中数学 > 题目详情
(2013•朝阳区一模)如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.E为侧棱PB的中点,F为侧棱PC上的任意一点.
(Ⅰ)若F为PC的中点,求证:面EFP⊥平面PAB;
(Ⅱ)求证:平面AFD⊥平面PAB;
(Ⅲ)是否存在点F,使得直线AF与平面PCD垂直?若存在,写出证明过程并求出线段PF的长;若不存在,请说明理由.
分析:(I)由三角形中位线定理结合BC∥AD,证出EF∥AD.利用面面垂直性质定理,证出PA⊥平面ABCD,得PA⊥AD.
结合AB⊥AD得到AD⊥平面PAB,从而可得EF⊥平面PAB.最后根据面面垂直判定定理,可得平面EFP⊥平面PAB.
(II)根据平面ABCD⊥平面PAC和PA⊥AC,证出PA⊥平面ABCD,得PA⊥AD,结合AB⊥AD证出AD⊥平面PAB,利用面面垂直判定定理,可得平面AFD⊥平面PAB.
(III)过点A作AF⊥PC于F,根据平面几何知识,结合题中数据算出CD⊥AC,结合(Ⅱ)的结论证出PA⊥CD,可得CD⊥平面PAC,得到CD⊥AF,从而证出AF⊥平面PCD.最后在△PAC中利用勾股定理和等积转换算出PF=
2
6
3
,即可得到PC上存在点F使得直线AF与平面PCD垂直.
解答:解:(Ⅰ)∵E、F分别为侧棱PB、PC的中点,∴EF∥BC.
∵BC∥AD,∴EF∥AD.
∵面PAC⊥平面ABCD,且PA⊥AC,面PAC∩平面ABCD=AC,
∴PA⊥平面ABCD,结合AD?平面ABCD,得PA⊥AD.
又∵AB⊥AD,PA∩AB=A,∴AD⊥平面PAB,可得EF⊥平面PAB.
∴结合EF?平面EFP,得平面EFP⊥平面PAB.    …(4分)
(Ⅱ)∵平面ABCD⊥平面PAC,
平面ABCD∩平面PAC=AC,且PA⊥AC,PA?平面PAC.
∴PA⊥平面ABCD,结合AD?平面ABCD,得PA⊥AD.
又∵AB⊥AD,PA∩AB=A,∴AD⊥平面PAB,
∵AD?平面AFD,
∴平面AFD⊥平面PAB.…(8分)
(Ⅲ)存在点F,使得直线AF与平面PCD垂直.
平面PCA中,过点A作AF⊥PC,垂足为F
∵由已知AB⊥AD,BC∥AD,AB=BC=1,AD=2.
∴根据平面几何知识,可得CD⊥AC.
又∵由(Ⅱ)PA⊥平面ABCD,得PA⊥CD,且PA∩AC=A,
∴CD⊥平面PAC,结合AF?平面PAC,得CD⊥AF.
又∵CD∩PC=C,∴AF⊥平面PCD.
在△PAC中,PA=2,AC=
2
,∠PAC=90°,
∴PC=
PA2+AC2
=
6
,PF=
PA•AC
PC
=
2
6
3

∴PC上存在点F,使得直线AF与平面PCD垂直,此时线段PF的长为
2
6
3
.…(14分)
点评:本题在特殊四棱锥中求证线面垂直和面面垂直,并求线段的长度.着重考查直线和平面垂直的判定和性质,两个平面垂直的判定定理的应用等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•朝阳区一模)已知函数f(x)=
3
2
sinωx-sin2
ωx
2
+
1
2
(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及函数f(x)的单调递增区间;
(Ⅱ)当x∈[0,
π
2
]
时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)若直线y=x+m与圆x2+y2+4x+2=0有两个不同的公共点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字-1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).
(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;
(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;
(Ⅲ)在两次试验中,记卡片上的数字分别为ξ,η,试求随机变量X=ξ•η的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)已知函数f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2]上有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)设τ=(x1,x2,…,x10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)达到最大值的所有排列τ的个数.

查看答案和解析>>

同步练习册答案