精英家教网 > 高中数学 > 题目详情
如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.
【答案】分析:(Ⅰ)根据题意,先求直线MN,OA的方程,可解得 .且 
从而可求 .进而可求△AMN的面积S.
(Ⅱ)求导函数,可知S=f(k)在上是减函数,从而可求S取得最大值.
解答:解:(Ⅰ)根据题意可得,MN:,OA:y=x,
解得 .且 
于是 
所以 

(Ⅱ)
因为当时,S'≤0,
故S=f(k)在上是减函数.
所以当时,S取得最大值
点评:本题考查的重点是函数模型的构建,考查导数知识的运用,解题的关键是利用三角形的面积公式,构建函数关系式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,将一块直角三角形板ABO置于平面直角坐标系中,已知AB=OB=1,AB⊥OB,点P(
1
2
1
4
)
是三角板内一点,现因三角板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN.问:
(1)求直线MN的方程
(2)求点M,N的坐标
(3)应如何确定直线MN的斜率,可使锯成的△AMN的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,
12
)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,数学公式)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,将一块直角三角形板ABO放置于平面直角坐标系中,已知AB=BO=2,AB⊥OB.点P(1,
1
2
)是三角板内一点,现因三角板中阴影部分(即△POB)受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN,设直线MN的斜率k.
(Ⅰ)试用k表示△AMN的面积S,并指出k的取值范围;
(Ⅱ)试求S的最大值.

查看答案和解析>>

同步练习册答案