精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是梯形, ,侧面底面.

(1)求证:平面平面

(2)若,且三棱锥的体积为,求侧面的面积.

【答案】(1)见解析;(2) 的面积为

【解析】试题分析

1根据题意证得再由面面垂直的性质可得平面,从而可得平面平面。(2)过点的延长线于点,则得底面, 令,则,可得,由三棱锥体积为,可得到,计算可得中, ,故可得

试题解析

(1)因为

所以 是等腰直角三角形,

因为

所以

所以,即

因为侧面底面,交线为

所以平面

所以平面平面.

(2)如图,过点的延长线于点

因为侧面底面,侧面 底面,

所以底面

,则

因为,所以

因为三棱锥的体积为

解得

所以

所以.

,

所以侧面的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆E: 的左焦点为F1 , 右焦点为F2 , 离心率e= .过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的角A,B,C所对的边,且c=2,C=
(1)若△ABC的面积等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,且(n+1)an=2Sn(n∈N*),数列{bn}满足 ,对任意n∈N* , 都有
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn . 若对任意的n∈N* , 不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,若方程有两个相异实根,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.

分组

频数

[2,4)

2

[4,6)

10

[6,8)

16

[8,10)

8

[10,12]

4

合计

40


(1)求频率分布直方图中a,b的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数= .

(1)若函数处取得极值,求的值,并判断处取得极大值还是极小值.

(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,矩形ABCD的一边AB在x轴上,另一边CD在x轴上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0).

(1)若A、B为椭圆的焦点,且椭圆经过C、D两点,求该椭圆的方程;
(2)若A、B为双曲线的焦点,且双曲线经过C、D两点,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式: ≥2.

查看答案和解析>>

同步练习册答案