精英家教网 > 高中数学 > 题目详情
定义在R上的函数,当时,,且对任意实数

求证:
(2)证明:是R上的增函数;
(3)若,求的取值范围。
(1)a=b=0,得f(0)=1。
(2)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0
利用 得到 f(x2)>f(x1) 。
(3)0<x<3

试题分析:(1)令a=b=0,则f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1             4
(2)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0
 ∴ f(x2)>f(x1) ∴ f(x)在R上是增函数
8
(3)f(x)·f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x) 又1=f(0),f(x)在R上递增
∴ 由f(3x-x2)>f(0)得:x-x2>0 ∴ 0<x<3                       12
点评:中档题,本题作为一道“连环题”,可采用分步得分的原则,首先利用“赋值法”解题。本题主要难点是配凑。抽象函数不等式的解法,主要是利用函数的单调性,转化成具体不等式求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

,若,则           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数若关于的方程有且只有两个不同的实根,则实数的取值范围为   (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则的值是 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=  ,则+ f ( 1 )=         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数满足,且时,,函数,则函数在区间[-5,5]内与轴交点的个数为( )
A.5B.7 C.8D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则实数=            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数,则            .

查看答案和解析>>

同步练习册答案