如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF∥平面ABC1D1;
(2)求证:EF⊥B1C;
(3)求三棱锥B1-EFC的体积.
![]()
解:(1)证明:连接BD1,在△DD1B中,E、F分别为D1D、DB的中点,则EF∥D1B.又EF⊄平面ABC1D1,D1B⊂平面ABC1D1,∴EF∥平面ABC1D1.
(2)证明:由题易得B1C⊥AB,B1C⊥BC1,AB∩BC1=B,
∴B1C⊥平面ABC1D1,又BD1⊂平面ABC1D1,
∴B1C⊥BD1,又EF∥BD1,
∴EF⊥B1C.![]()
(3)∵CF⊥BD,CF⊥BB1,BD∩BB1=B,
∴CF⊥平面BDD1B1,
即CF⊥平面EFB1,
又易得CF=BF=
,BD1=2
,
∴EF=
BD1=
,
∴B1F=
=
=
,
B1E=
=
=3,
∴EF2+B1F2=B1E2,
故∠EFB1=90°,
![]()
科目:高中数学 来源:2011-2012学年浙江省宁波市慈溪市高三(上)期中数学试卷(文科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com