精英家教网 > 高中数学 > 题目详情
6.若直线2ax-by+2=0(a>0,b>0),经过圆x2+y2+2x-4y+1=0的圆心,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{4}$D.4

分析 求出圆的圆心坐标,代入直线方程,得到ab关系式,然后通过”1“的代换利用基本不等式求解即可.

解答 解:x2+y2+2x-4y+1=0的圆心(-1,2),
所以直线2ax-by+2=0(a>0,b>0)经过圆心,可得:a+b=1,
$\frac{1}{a}+\frac{1}{b}$=($\frac{1}{a}+\frac{1}{b}$)(a+b)=2+$\frac{b}{a}$+$\frac{a}{b}$≥4,当且仅当a=b=$\frac{1}{2}$,
所以$\frac{1}{a}+\frac{1}{b}$的最小值是:4.
故选:D.

点评 本题考查直线与圆的位置关系的应用,基本不等式求解函数的最值,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,过动点P分别作圆C1:x2+y2+2x+2y+1=0和圆C2:x2+y2-4x-6y+9=0的切线PA,PB(A,B为切点),若|PA|=|PB|,则|OP|的最小值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果框图所给的程序运行结果为S=35,那么判断框中整数m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sinx-bcosx(其中b为实数)的图象关于直线x=-$\frac{π}{6}$对称,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是(  )
A.函数f(x)的图象向左平移$\frac{π}{3}$个单位得到的函数是偶函数
B.不等式f(x1)f(x2)≤4取到等号时|x1-x2|的最小值为2π
C.函数f(x)的图象的一个对称中心为($\frac{2}{3}$π,0)
D.函数f(x)在区间[$\frac{π}{6}$,π]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,其左顶点A在圆O:x2+y2=16上.
(Ⅰ)求椭圆W的方程;
(Ⅱ)直线AP与椭圆W的另一个交点为P,与圆O的另一个交点为Q.
(i)当|AP|=$\frac{8\sqrt{2}}{5}$时,求直线AP的斜率;
(ii)是否存在直线AP,使得$\frac{|AQ|}{|AP|}$=4?若存在,求出直线AP的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a是实数,且$\frac{2a}{1+i}$+1+i是实数,则a=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4,(a0,a1,a2,a3,a4∈R),当x=-1时,f(x)取极大值$\frac{2}{3}$,且函数y=f(x)的图象关于原点对称.
(1)求y=f(x)的表达式;
(2)试在函数y=f(x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在[-$\sqrt{2}$,$\sqrt{2}$]上;
(3)设xn=$\frac{{2}^{n}-1}{{2}^{n}}$,y=$\frac{\sqrt{2}(1-{3}^{m})}{{3}^{m}}$(m,n∈N+),求证:|f(xn)-f(ym)|<$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1与椭圆$\frac{x^2}{m^2}+\frac{y^2}{b^2}$=1(m>b>0)的离心率之积等于1,则以a,b,m为边长的三角形一定是(  )
A.等腰三角形B.钝角三角形C.锐角三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=x2+1,求:
(1)在点(1,2)处的切线方程;
(2)过点(1,1)的切线方程.

查看答案和解析>>

同步练习册答案