精英家教网 > 高中数学 > 题目详情
已知:二次函数f(x)=ax2+bx+c同时满足条件:①f(3-x)=f(x);②f(1)=0;③对任意实数x,f(x)≥
1
4a
-
1
2
恒成立.
(1)求y=f(x)的表达式;
(2)数列{an},{bn},若对任意n均存在一个函数gn(x),使得对任意的非零实数x都满足gn(x)•f(x)+anx+bn=xn+1,(n∈N*),求:数列{an}与{bn}的通项公式.
分析:(1)由条件得
a+b+c=0
-
b
2a
=
3
2
b=-3a
c=-a-b=2a
.由f(x)≥
1
4a
-
1
2
得ax2-3ax+2a-
1
4a
+
1
2
≥0
恒成立,由此能求出f(x)的表达式.
(2)f(1)=0,f(2)=0,因为g(x)•f(x)+anx+bn=xn+1恒成立,令x=1得an+bn=1,令x=2得2an+bn=2n+1,由此能求出数列{an}与{bn}的通项公式.
解答:解:(1)由条件得
a+b+c=0
-
b
2a
=
3
2
b=-3a
c=-a-b=2a
.…(4分)
f(x)≥
1
4a
-
1
2
得ax2-3ax+2a-
1
4a
+
1
2
≥0
恒成立,
a>0
△=9a2-4a(2a-
1
4a
+
1
2
)≤0

整理,得
a>0
(a-1)2≤0

解得a=1.…(6分)
∴f(x)=x2-3x+2…(8分)
(2)∵f(1)=0,f(2)=0,
又因为g(x)•f(x)+anx+bn=xn+1恒成立,
令x=1,得an+bn=1,…(10分)
令x=2,得2an+bn=2n+1…(12分)
∴an=2n+1-1,
bn=2-2n+1.…(14分).
点评:本题考查函数表达式的求法和数列通项公式的计算.解题时要认真审题,仔细解答,注意迭代法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:二次函数f(x)=ax2+bx+c满足:①对于任意实数x,都有f(x)≥x,且当x∈(1,3)时,f(x)≤
18
(x+2)2
恒成立,②f(-2)=0
(1)求证:f(2)=2
(2)求f(x)的解析式.
(3)若g(x)=x+m,对于任意x∈[-2,2],存在x0∈[-2,2],使得f(x)=g(x0)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某二次函数f(x)图象过原点,且经过(-1,-5)和(2,4)两点,
(Ⅰ)试求f(x)函数的解析式;
(Ⅱ)判断f(x)在区间[3,7]上的单调性,并用单调函数的定义进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.
(I)求a,b所满足的关系;
(II)若直线l:y=kx(k∈R)与函数y=f(x)在x∈[1,2]上的图象恒有公共点,求k的最小值;
(III)试判断是否存在a∈(-2,0)∪(0,2),使得对任意的x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,请求出符合条件的a的所有值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:二次函数f(x)满足f(0)=1和f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-ax2+1有一个正的零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案