精英家教网 > 高中数学 > 题目详情

数学公式在区间[a,b]上的最小值为2a,最大值为2b,求[a,b].

解:(1)因为f(x)对称轴为x=0
若0≤a<b,则f(x)在[a,b]上单调递减,
所以f(a)=2b,f(b)=2a,
于是
解得[a,b]=[1,3].
(2)若a<b≤0,则f(x)在[a,b]上单调递增,
所以f(a)=2a,f(b)=2b,
于是,方程两根异号,
故不存在满足a<b≤0的a,b.
(3)若a<0<b,则f(x)在[a,0]上单调递增,在[0,b]上单调递减,
所以
所以
又a<0,所以
故f(x)在x=a处取得最小值2a,即,得
所以
综上所述,[a,b]=[1,3]或
分析:求出二次函数的对称轴,通过对区间与对称轴x=0的位置关系分三类,求出二次函数f(x)的最值,列出方程组,求出a,b的值.
点评:解决二次函数在区间上的单调性、最值问题,应该先求出二次函数的对称轴,根据对称轴与区间的关系来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0))处的切线为:l:y=g(x)=f′(x0)(x-x0)+f(x0),F(x)=f(x)-g(x),如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)记定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上“中值点”的个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:如果函数y=f(x)在区间[a,b]上存在x0(a<x0<b),满足f(x0)=
f(b)-f(a)b-a
,则称x0是函数y=f(x)在区间[a,b]上的一个均值点.已知函数f(x)=-x2+mx+1在区间[-1,1]上存在均值点,则实数m的取值范围是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区一模)在各项均为正数的数列{an}中,前n项和Sn满足2Sn+1=an(2an+1),n∈N*
(Ⅰ)证明{an}是等差数列,并求这个数列的通项公式及前n项和的公式;
(Ⅱ)在XOY平面上,设点列Mn(xn,yn)满足an=nxn,Sn=n2yn,且点列Mn在直线C上,Mn中最高点为Mk,若称直线C与x轴、直线x=a,x=b所围成的图形的面积为直线C在区间[a,b]上的面积,试求直线C在区间[x3,xk]上的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(2,0),点Q(x,y)满足
x-2y+2≥0
y≥|x|
,目标函数z=2x-y的最小值、最大值分别为a,b,则|
PQ
|cos∠OPQ
(O为原点)的取值落在区间[a,b]上的概率为
2
3
2
3

查看答案和解析>>

同步练习册答案