精英家教网 > 高中数学 > 题目详情
对集合A={1,2},B={1,2,3}及平面上的点P(a,b)(a∈A,b∈B),记“点P(a,b)落在直线x+y=n上”为事件C(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为(  )
分析:分别从集合A和B中随机取一个数a和b,组成一个有序数对,共有2×3中方法,要计算事件Cn的概率最大时n的所有可能值,要把题目中所有的情况进行分析求解,比较出n的所有可能值.
解答:解:事件Cn的总事件数为6.只要求出当n=2,3,4,5时的基本事件个数即可.
当n=2时,落在直线x+y=2上的点为(1,1);
当n=3时,落在直线x+y=3上的点为(1,2)、(2,1);
当n=4时,落在直线x+y=4上的点为(1,3)、(2,2);
当n=5时,落在直线x+y=5上的点为(2,3);
显然当n=3,4时,事件Cn的概率最大为
1
3

故选D.
点评:古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={1,2,3,4,5},映射f:A→A满足:对任意x∈A,有f(1)<f(2)<f(3),则这样映射f的个数共有
250
250
个.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)实数a,b是分别从集合A={1,2,3,4}中随机抽取的元素(a与b可以相同),集合B={x|x2-ax+b=0}.
(1)写出使B≠?的所有实数对(a,b);
(2)求椭机抽取的a与b的值使B≠?且B⊆A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A1,A2,…,Am为集合A={1,2,…,n}(n≥2且n∈N*)的子集,且满足两个条件:
①A1∪A2∪…∪Am=A;
②对任意的{x,y}⊆A,至少存在一个i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.则称集合组A1,A2,…,Am具有性质P.
如图,作n行m列数表,定义数表中的第k行第l列的数为akl=
1(k∈Al)
0(k∉Al)

a11 a12 a1m
a21 a22 a2m
an1 an2 anm
(Ⅰ)当n=4时,判断下列两个集合组是否具有性质P,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:A1={1,3},A2={2,3},A3={4};
集合组2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)当n=7时,若集合组A1,A2,A3具有性质P,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合A1,A2,A3
(Ⅲ)当n=100时,集合组A1,A2,…,At是具有性质P且所含集合个数最小的集合组,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的个数)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,3,…,n},若B≠∅且B⊆A,记G(B)为B中元素的最大值与最小值之和,则对所有的B,G(B)的平均值=
 

查看答案和解析>>

同步练习册答案