精英家教网 > 高中数学 > 题目详情
15、如图,平行四边形ABCD中,E在AB上,F在DE上AE:EB=1:2,△AEF的面积为6,则△ADF的面积为
18
分析:根据题意,可得S△ADF∽S△CDF,根据相似的性质我们可知,面积比等于相似比的的平方,我们可以求出两个三角形的相似比,易得到答案.
解答:解:由题意可得△AEF∽△CDF,
且相似比为1:3,
由△AEF的面积为6,
得△CDF的面积为54,
S△ADF:S△CDF=1:3,所以S△ADF=18.
故答案为:18
点评:在求三角形面积时,如果三角形的各边、角值未知,直接求三角形面积不易求出,可尝试利用相似的性质,面积比等于相似比的的平方,寻找一个与未知三角形相关的三角形,间接的求未知三角形的面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平行四边形ABCD的对角线交于点O,过点O的直线交AD于E,BC于F,交AB延长线于G,已知AB=a,BC=b,BG=c,则BF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.
(I)求证:AB⊥DE
(Ⅱ)求三棱锥E-ABD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD中,E,F分别是BC,DC的中点,G为交点,若
AB
=
a
AD
=
b
,试以
a
b
为基底表示
CG
=
-
1
3
(
a
+
b
)
-
1
3
(
a
+
b
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)如图,平行四边形ABCD中,点E是边BC(靠近点B)的三等分点,F是AB(靠近点A)的三等分点,P是AE与DF的交点,则
AP
AB
AD
表示为
AP
=
3
10
AB
+
1
10
AD
AP
=
3
10
AB
+
1
10
AD

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平行四边形ABCD中,
AB
=
a
AD
=
b
CE
=
1
3
CB
CF
=
2
3
CD

(1)用
a
b
表示
EF

(2)若|
a
|=1
|
b
|=4
,∠DAB=60°,分别求|
EF
|
AC
FE
的值.

查看答案和解析>>

同步练习册答案