精英家教网 > 高中数学 > 题目详情
设f(x)为定义于(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2)、f(-π)、f(3)的大小顺序是( )
A.f(-π)>f(3)>f(-2)
B.f(-π)>f(-2)>f(3)
C.f(-π)<f(3)<f(-2)
D.f(-π)<f(-2)<f(3)
【答案】分析:由题设条件,f(x)为定义在(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,知f(x)在(-∞,0)上是减函数,此类函数的特征是自变量的绝对值越大,函数值越大,由此特征即可比较出三数f(-2),f(-π),f(3)的大小顺序.
解答:解:f(x)为定义在(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,
知f(x)在(-∞,0)上是减函数,此类函数的特征是自变量的绝对值越大,函数值越大,
∵2<3<π
∴f(2)<f(3)<f(π)
即f(-2)<f(3)<f(-π)
故选A.
点评:本题考点是函数的奇偶性,考查偶函数的图象的性质,本题在求解时综合利用函数的奇偶性与单调性得出判断策略,轻松判断出结论,方法巧妙!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)为定义于(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2)、f(-π)、f(3)的大小顺序是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市武侯区玉林中学高一(上)期中数学试卷(解析版) 题型:选择题

设f(x)为定义于(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2)、f(-π)、f(3)的大小顺序是( )
A.f(-π)>f(3)>f(-2)
B.f(-π)>f(-2)>f(3)
C.f(-π)<f(3)<f(-2)
D.f(-π)<f(-2)<f(3)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市武侯区玉林中学高一(上)期中数学试卷(解析版) 题型:选择题

设f(x)为定义于(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2)、f(-π)、f(3)的大小顺序是( )
A.f(-π)>f(3)>f(-2)
B.f(-π)>f(-2)>f(3)
C.f(-π)<f(3)<f(-2)
D.f(-π)<f(-2)<f(3)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年黑龙江省哈师大附中高一(上)10月月考数学试卷(解析版) 题型:选择题

设f(x)为定义于(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2)、f(-π)、f(3)的大小顺序是( )
A.f(-π)>f(3)>f(-2)
B.f(-π)>f(-2)>f(3)
C.f(-π)<f(3)<f(-2)
D.f(-π)<f(-2)<f(3)

查看答案和解析>>

同步练习册答案