精英家教网 > 高中数学 > 题目详情
精英家教网如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:
OP
=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).
(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;
(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.
分析:(1)根据p点的坐标表示出向量
OP
,进而由|
OP
|2=(2e1-2e22可得答案.
(2)设圆上任意点M的坐标然后表示出
OM
=xe1+ye2,根据|
OM
|=1找出x,y的关系即可.
解答:解:(1)∵P点斜坐标为(2,-2),
OP
=2e1-2e2.∴|
OP
|2=(2e1-2e22=8-8e1•e2=8-8×cos60°=4.
∴|
OP
|=2,即|OP|=2.
(2)设圆上动点M的斜坐标为(x,y),则
OM
=xe1+ye2
∴(xe1+ye22=1.∴x2+y2+2xye1•e2=1.∴x2+y2+xy=1.
故所求方程为x2+y2+xy=1.
点评:本题主要考查平面向量的坐标表示和运算.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在平面斜坐标系xoy中,∠xoy=60°,平面上任一点P关于斜坐标系的斜坐标这样定义的,若
OP
=xe1+ye2(其中e1,e2分别是与x轴y轴同方向的单位向量),则P点的斜坐标为(x,y),则以O为圆心,1为半径的圆在斜坐标系下的方程为(  )
A、x2+y2=1
B、x2+y2+xy=1
C、x2+y2-xy=1
D、x2+y2+2xy=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面斜坐标系XOY中,∠xoy=θ,平面上任意一点P关于斜坐标系的斜坐标这样定义:若
OP
=x
e
1
+y
e
2
(其中
e
1
e
2
分别是X轴,Y轴同方向的单位向量).则P点的斜坐标为(x,y),向量
OP
的斜坐标为(x,y).有以下结论:
①若θ=60°,P(2,-1)则|
OP
|=
3

②若P(x1,y1),Q(x2,y2),则
OP
+
OQ
=(x1+x2y1+y2)

③若
OP
=(x1,y1),
OQ
=(x2,y2),则
OP
OQ
=x1x2+y1y2

④若θ=60°,以O为圆心,1为半径的圆的斜坐标方程为x2+y2+xy-1=0
其中正确的结论个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面斜坐标系xOy中,∠xOy=135°.斜坐标定义:如果
OP
=xe1+xe2,(其中e1,e2分别是x轴,y轴的单位向量),则(x,y)叫做P的斜坐标.
(1)已知P的斜坐标为(1,
2
),则|
OP
|=
 

(2)在此坐标系内,已知A(0,2),B(2,0),动点P满足|
AP
|=|
BP
|,则P的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区一模)如图,在平面斜坐标系中xoy中,∠xoy=60°,平面上任一点P的斜坐标定义如下:若
OP
=x
e1
+y
e2
,其中
e1
e2
分别为与x轴,y轴同方向的单位向量,则点P的斜坐标为(x,y).那么,以O为圆心,2为半径的圆有斜坐标系xoy中的方程是
x2+xy+y2-4=0
x2+xy+y2-4=0

查看答案和解析>>

同步练习册答案