精英家教网 > 高中数学 > 题目详情
若函数f(x)满足f(3x+2)=9x+8,则f(x)是(  )
分析:利用换元法,令t=3x+2,则x=
t-2
3
代入f(x)中,即可求得f(t),然后将t换为x即可得f(x)的解析式.
解答:解:令t=3x+2,则x=
t-2
3
,所以f(t)=9×
t-2
3
+8=3t+2.
所以f(x)=3x+2.
故选B.
点评:本题主要考查复合函数解析式的求法,采取的方法一般是利用配凑法或者换元法来解决.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省荆州中学高三(上)第一次质量检测数学试卷 (理科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省洛阳一中高三(上)期中数学考前选择题强化训练(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州中学高三(上)第一次质量检测数学试卷 (文科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省湘西州边城高级中学高三(上)月考数学试卷(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省湘西州古丈县补习学校高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步练习册答案