精英家教网 > 高中数学 > 题目详情

直线θ=-数学公式被曲线ρ=数学公式cos(θ+数学公式)所截得的弦的弦长为________.


分析:先将极坐标方程化为普通方程,再利用直线经过圆心的条件或利用弦长公式或利用圆的半径、弦心距、弦长的一半的关系都可以求出答案.
解答:∵曲线ρ=cos(θ+),展开得
∴ρ=cosθ-sinθ,∴ρ2=ρcosθ-ρsinθ,
∴普通方程为x2+y2=x-y,即
∴圆心,半径
∵直线θ=-,∴直线的普通方程为x+y=0.
∵圆心在直线,
∴直线被此圆所截得的弦即为圆的直径2r=
故答案为
点评:本题考查了把极坐标方程化为普通方程并求出直线与圆相交弦的弦长问题,正确计算和充分利用直线经过圆心的条件是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直角坐标系xOy中,曲线C的参数方程为
x=
6
cosθ
y=
2
sinθ
(θ为参数),直线l的参数方程为
x=
3
2
t
y=2-
1
2
t
(t为参数),T为直线l与曲线C的公共点.以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求点T的极坐标;
(Ⅱ)将曲线C上所有点的纵坐标伸长为原来的
3
倍(横坐标不变)后得到曲线W,过点T作直线m,若直线m被曲线W截得的线段长为2
3
,求直线m的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)(选修4-4:坐标系与参数方程)在直角坐标系中,直线l的参数方程为
x=-1+
3
5
t
y=-1+
4
5
t
t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=
2
sin(θ+
π
4
)

(I)求曲线C的直角坐标方程;
(II)求直线l被曲线C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)已知在直角坐标系xOy中,曲线C的参数方程为
x=2+2cosθ
y=2sinθ
为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直 线l的方程为ρsin(θ+
π
4
)=2
2

(I)求曲线C在极坐标系中的方程;
(II)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
2
t
y=
2
t-1
(t为参数)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程.
已知曲线C的极坐标方程为ρ=
4cosθ
sin2θ
,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

同步练习册答案