精英家教网 > 高中数学 > 题目详情

已知公差分别是2,3的等差数列,则数列是(   )

A.等差数列且公差为6              B. 等差数列且公差为5

 C.等比数列且公比为6              D. 等比数列且公比为5

【押题指数】★★★★★

A


解析:

由题意得

是公差为6的等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=
2
3
π
,在△ABC中,角A、B、C所对的边分别是a、b、c.
(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;
(Ⅱ)若c=
3
,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,且公差d>0,它的第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N*均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
成立,求c1+c2+…+c2011的值;
(3)求数列{anbn}的前n项和Sn;并求满足Sn<168的最大正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)求数列
1
anan+1
 }
的前n项和sn
(3)设数列{cn}对任意自然数n,均有
c1
b1
+
c2
b2
+
c3
b3
+…+
cn
bn
=an+1
,求c1+c2+c3+…+c2006值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列{cn}的第二项、第三项、第四项.
(1)求数列{an}的通项公式;
(2)设bn=
1n(an+3)
,Sn=b1+b2+…+bn,求Sn
(3)对于(2)中的Sn是否存在实数t,使得对任意的n∈N*均有:8Sn≤t(an+17)成立?若存在,求出t的范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案