精英家教网 > 高中数学 > 题目详情
2.已知幂函数f(x)=xα(α∈Z),具有如下性质:f2(1)+f2(-1)=2[f(1)+f(-1)-1],则f(x)是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.是非奇非偶函数

分析 欲正确作答,取常量n=2,验证可得结论.

解答 解:幂函数f(x)=xα(α∈Z)中,
若有f2(1)+f2(-1)=2[f(1)+f(-1)-1],则可取常量n=2,
所以,函数为f(x)=x2,此函数的图象是开口向上,并以y轴为对称轴的二次函数,
即定义域为R,关于原点对称,且f(-x)=(-x)2=x2=f(x),所以为偶函数.
故选:B.

点评 本题考查幂函数,函数的奇偶性,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.用一张正方形的包装纸把一个棱长为1的正方体完全包住,要求不能将正方形纸撕开,则所需包装纸的最小面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知直线l经过定点(0,1),曲线C的方程是y2=4x,试讨论直线l与C的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={x|log2x≤-2},则∁RA=(  )
A.$({\frac{1}{4},+∞})$B.$(-∞,0]∪({\frac{1}{4},+∞})$C.$(-∞,0]∪[{\frac{1}{4},+∞})$D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC三个顶点是A(3,3),B(-3,1),C(2,0).
(1)求AB边中线CD所在直线方程;
(2)求AB边的垂直平分线的方程;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列集合不是{1,2,3}的真子集的是(  )
A.{1}B.{2,3}C.D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x2-bx+c且f(1)=0,f(2)=-3
(1)求f(x)的函数解析式;
(2)求$f({\frac{1}{{\sqrt{x+1}}}})$的解析式及其定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{{{2^x}+b}}{{{2^x}+a}}$,且$f(1)=\frac{1}{3}$,f(0)=0
(1)求函数f(x)的解析式;
(2)求函数f(x)的值域;
(3)求证:方程f(x)=lnx至少有一根在区间(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,过圆柱的两条母线AA1和BB1的截面A1 ABB1 的面积为S,母线AA1 的长为l,∠A1 O1 B1=90°,求此圆柱的体积.

查看答案和解析>>

同步练习册答案