精英家教网 > 高中数学 > 题目详情
在数列{an}中,an=n2-2λn(λ∈R),若{an}是单调递增数列,则λ的取值范围为
(-∞,
3
2
)
(-∞,
3
2
)
分析:若数列{an}为单调递增数列,则an+1-an>0对于任意n∈N*都成立,得出2n+1-2λ>0,采用分离参数法求实数λ的取值范围即可.
解答:解:∵an=n2-2λn①,∴an+1=(n+1)2-2λ(n+1)②,
②-①,得an+1-an=2n+1-2λ.
若数列{an}为单调递增数列,则an+1-an>0对于任意n∈N*都成立,即 2n+1-2λ>0.
移向得2λ<(2n+1),2λ只需小于(2n+1)的最小值即可,而易知当n=1时,(2n+1)的最小值为3,
所以2λ<3,解得λ<
3
2

故答案为:(-∞,
3
2
).
点评:本题考查数列的函数性质及恒成立问题,考查了转化能力、计算能力,分离参数法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案