精英家教网 > 高中数学 > 题目详情

设正整数集N*,已知集合A={x|x=3m,m∈N*},B={x|x=3m-1,m∈N*},C={x|x=3m-2,m∈N*},若a∈A,b∈B,c∈C,则下列结论中可能成立的是


  1. A.
    2006=a+b+c
  2. B.
    2006=abc
  3. C.
    2006=a+bc
  4. D.
    2006=a(b+c)
C
分析:由于2006=3×669-1,对于A:a+b+c=3m1+3m2-1+3m3-2=3(m1+m2+m3-1)不合;对于B:abc=3m1(3m2-1)(3m3-2)不合;对于C:a+bc=3m1+(3m2-1)(3m3-2)=3m-1适合;从而得出正确选项.
解答:由于2006=3×669-1,
而a+b+c=3m1+3m2-1+3m3-2=3(m1+m2+m3-1)不满足;
abc=3m1(3m2-1)(3m3-2)不满足;
a+bc=3m1+(3m2-1)(3m3-2)=3m-1适合;
a(b+c)=3m1(3m2-1+3m3-2)不满足;
故选C.
点评:本小题主要考查集合的表示法、整数的性质等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(n,an)(n∈N*)在函数f(x)=-6x-2的图象上,数列{an}的前n项和为Sn
(Ⅰ)求Sn
(Ⅱ)设cn=an+8n+3,数列{dn}满足d1=c1dn+1=cdn(n∈N*).求数列{dn}的通项公式;
(Ⅲ)设g(x)是定义在正整数集上的函数,对于任意的正整数x1、x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,且a≠0),记bn=
g(
dn+1
2
)
dn+1
,试判断数列{bn}是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.
(1)求数列{bn}的通项公式;
(2)设cn=bn+8n+3,数列{dn}满足d1=c1dn+1=cdn(n∈N*).求数列{dn}的前n项和Dn
(3)设g(x)是定义在正整数集上的函数,对于任意的正整数x1,x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,a≠0),试判断数列{
g(
dn+1
2
)
dn+1
}
是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正整数集N*,已知集合A={x|x=3m,m∈N*},B={x|x=3m-1,m∈N*},C={x|x=3m-2,m∈N*},若a∈A,b∈B,c∈C,则下列结论中可能成立的是(  )

查看答案和解析>>

科目:高中数学 来源:2006年浙江省温州市摇篮杯高一数学竞赛试卷(解析版) 题型:选择题

设正整数集N*,已知集合A={x|x=3m,m∈N*},B={x|x=3m-1,m∈N*},C={x|x=3m-2,m∈N*},若a∈A,b∈B,c∈C,则下列结论中可能成立的是( )
A.2006=a+b+c
B.2006=abc
C.2006=a+bc
D.2006=a(b+c)

查看答案和解析>>

同步练习册答案