精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1-cosθ\\ y=sinθ\end{array}\right.$(θ为参数).
(1)将C1的方程化为普通方程;
(2)以O为极点,x轴的正半轴建立极坐标系.设曲线C2的极坐标方程是$θ=\frac{π}{6}$,求曲线C1和C2的交点的极坐标.

分析 (1)利用cos2θ+sin2θ=1即可化为普通方程.
(2)曲线C2的极坐标方程是$θ=\frac{π}{6}$,可得直角坐标方程:y=$xtan\frac{π}{6}$,与圆的方程联立即可得出交点坐标,进而化为极坐标.

解答 解:(1)由曲线C1的参数方程为$\left\{\begin{array}{l}x=1-cosθ\\ y=sinθ\end{array}\right.$(θ为参数),可得(x-1)2+y2=1.
(2)曲线C2的极坐标方程是$θ=\frac{π}{6}$,可得直角坐标方程:y=$xtan\frac{π}{6}$,即y=$\frac{\sqrt{3}}{3}$x.
联立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{(x-1)^{2}+{y}^{2}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,或$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{\sqrt{3}}{2}}\end{array}\right.$.
分别化为极坐标(0,0),$(\sqrt{3},\frac{π}{6})$.
∴曲线C1和C2的交点的极坐标为(0,0),$(\sqrt{3},\frac{π}{6})$.

点评 本题考查了极坐标与直角坐标方程的互化、曲线的交点坐标、参数方程应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|(x+3)(6-x)≤0},B={x|log2(x+2)<4}.
(1)求A∩∁RB;
(2)已知C={x|2a<x<a+1}(a∈R),若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A(m,-m+3),B(2,m-1),C(-1,4),直线AC的斜率等于直线BC的斜率的3倍,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a>-b,则下列不等式中,成立的是(  )
A.a(a+b)2<-b(a+b)2B.a(a+b)2>-b(a+b)2C.a(a+b)2≤-b(a+b)2D.a(a+b)2≥-b(a+b)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义移动运算“⊕”,对于任意正整数n满足以下运算:(1)1⊕1=1;(2)(n+1)⊕1=2+n⊕1,则n⊕1用含n的代数式可表示为(  )
A.2n-1B.nC.2n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C的参数方程:$\left\{{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}}$(α为参数),曲线C上的点$M(1,\frac{{\sqrt{2}}}{2})$对应的参数α=$\frac{π}{4}$,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知直线l过点P(1,0),且与曲线C于A,B两点,求|PA|•|PB|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PD⊥底面ABCD,AB=2AD,∠ADB=90°,
(1)证明PA⊥BD;
(2)设PD=AD=1,求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,点F1、F2为其左、右焦点,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t∈R).
(Ⅰ)求曲线C的标准方程和直线l的普通方程;
(Ⅱ)若点P为曲线C上的动点,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面区域内运动,则z=x-y的最大值是(  )
A.-1B.-2C.2D.3

查看答案和解析>>

同步练习册答案