ÒÑÖªÔ²OµÄ·½³ÌΪx2+y2=1ºÍµãA£¨a£¬0£©£¬ÉèÔ²OÓëxÖá½»ÓÚP¡¢QÁ½µã£¬MÊÇÔ²OOÉÏÒìÓÚP¡¢QµÄÈÎÒâÒ»µã£¬¹ýµãA£¨a£¬0£©ÇÒÓëxÖá´¹Ö±µÄÖ±ÏßΪl£¬Ö±ÏßPM½»Ö±ÏßlÓÚµãE£¬Ö±ÏßQM½»Ö±ÏßlÓÚµãF£®
£¨1£©Èôa=3£¬Ö±Ïßl1¹ýµãA£¨3£¬0£©£¬ÇÒÓëÔ²OÏàÇУ¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©Ö¤Ã÷£ºÈôa=3£¬ÔòÒÔEFΪֱ¾¶µÄÔ²C×ܹý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£»
£¨3£©ÈôÒÔEFΪֱ¾¶µÄÔ²C¹ý¶¨µã£¬Ì½ÇóaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÀûÓÃa=3£¬Ö±Ïßl1¹ýµãA£¨3£¬0£©£¬ÇÒÓëÔ²OÏàÇУ¬Í¨¹ýÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓڰ뾶£¬Çó³öÖ±ÏßµÄбÂÊ£¬¼´¿ÉÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©Í¨¹ýa=3£¬Éè³öMµÄ×ø±ê£¬ÍƳöÒÔEFΪֱ¾¶µÄÔ²CµÄ·½³Ì£¬ÀûÓÃÔ²×ܹý¶¨µã£¬¼´¿ÉÇó³ö¶¨µã×ø±ê£»
£¨3£©Í¨¹ýÒÔEFΪֱ¾¶µÄÔ²C¹ý¶¨µã£¬Ð´³öÄæÃüÌ⣬ȻºóÇóaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©¡ßÖ±Ïßl1¹ýµãA£¨3£¬0£©£¬ÇÒÓëÔ²C£ºx2+y2=1ÏàÇУ¬
ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x-3£©£¬¼´kx-y-3k=0£¬
ÔòÔ²ÐÄO£¨0£¬0£©µ½Ö±Ïßl1µÄ¾àÀëΪd=
|3k|
k2+1
=1
£¬½âµÃk=¡À
2
4
£¬
¡àÖ±Ïßl1µÄ·½³ÌΪy=¡À
2
4
£¨x-3£©£¬¼´y=¡À
2
4
£¨x-3£©£®
£¨2£©¶ÔÓÚÔ²·½³Ìx2+y2=1£¬Áîy=0£¬µÃx=¡À1£¬¼´P£¨-1£¬0£©£¬Q£¨1£¬0£©£®
ÓÖÖ±Ïßl2¹ýµãaÇÒÓëxÖá´¹Ö±£¬¡àÖ±Ïßl2·½³ÌΪx=3£¬ÉèM£¨s£¬t£©£¬ÔòÖ±ÏßPM·½³ÌΪy=
t
s+1
£¨x+1£©£®
½â·½³Ì×é
x=3
y=
t
s+1
(x+1)
£¬µÃP¡ä(3£¬
4t
s+1
)
ͬÀí¿ÉµÃ£¬Q¡ä(3£¬
2t
s-1
)

¡àÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C¡äµÄ·½³ÌΪ£¨x-3£©£¨x-3£©+£¨y-
4t
s+1
£©£¨y-
2t
s-1
£©=0£¬
ÓÖs2+t2=1£¬¡àÕûÀíµÃ(x2+y2-6x+1)+
6s-2
t
y=0
£¬
ÈôÔ²C¡ä¾­¹ý¶¨µã£¬Ö»ÐèÁîy=0£¬´Ó¶øÓÐx2-6x+1=0£¬½âµÃx=3¡À2
2
£¬
¡àÔ²C¡ä×ܾ­¹ý¶¨µã×ø±êΪ£¨3¡À2
2
£¬0£©£®
£¨3£©ÒÔEFΪֱ¾¶µÄÔ²C¹ý¶¨µã£¬ËüµÄÄæÃüÌ⣺ÉèÔ²OÓëxÖá½»ÓÚP¡¢QÁ½µã£¬MÊÇÔ²OÉÏÒìÓÚP¡¢QµÄÈÎÒâÒ»µã£¬
¹ýµãM£¨m£¬0£©ÇÒÓëxÖá´¹Ö±µÄÖ±ÏßΪl2£¬Ö±ÏßPM½»Ö±Ïßl2ÓÚµãP¡ä£¬
Ö±ÏßQM½»Ö±Ïßl2ÓÚµãQ¡ä£¬ÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C×ܹý¶¨µã£¬Ôòa¡Ý1»òÕßa¡Ü-1£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÔ²µÄλÖùØϵ£¬µãµ½Ö±ÏߵľàÀ빫ʽµÄÓ¦Óã¬Ô²µÄ·½³ÌµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²OµÄ·½³ÌΪx2+y2=1£¬Ö±Ïßl1¹ýµãA£¨3£¬0£©£¬ÇÒÓëÔ²OÏàÇУ®
£¨1£©ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©ÉèÔ²OÓëxÖáÏཻÓÚP£¬QÁ½µã£¬MÊÇÔ²OÉÏÒìÓÚP£¬QµÄÈÎÒâÒ»µã£¬¹ýµãAÇÒÓëxÖá´¹Ö±µÄÖ±ÏßΪl2£¬Ö±ÏßPM½»Ö±Ïßl2ÓÚµãP¡ä£¬Ö±ÏßQM½»Ö±Ïßl2ÓÚµãQ¡ä£®ÇóÖ¤£ºÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C×ܾ­¹ý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²OµÄ·½³ÌΪ x2+y2=100£¬µãAµÄ×ø±êΪ£¨-6£¬0£©£¬MΪԲOÉÏÈÎÒ»µã£¬AMµÄ´¹Ö±Æ½·ÖÏß½»OMÓÚµãP£¬ÇóµãPµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²OµÄ·½³ÌΪx2+y2=2£¬Ô²MµÄ·½³ÌΪ£¨x-1£©2+£¨y-3£©2=1£¬¹ýÔ²MÉÏÈÎÒ»µãP×÷Ô²OµÄÇÐÏßPA£¬ÈôÖ±ÏßPAÓëÔ²MµÄÁíÒ»¸ö½»µãΪQ£¬Ôòµ±ÏÒPQµÄ³¤¶È×î´óʱ£¬Ö±ÏßPAµÄбÂÊÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

10¡¢ÒÑÖªÔ²OµÄ·½³ÌΪx2+y2=4£¬PÊÇÔ²OÉϵÄÒ»¸ö¶¯µã£¬ÈôOPµÄ´¹Ö±Æ½·ÖÏß×ÜÊDZ»Æ½ÃæÇøÓò|x|+|y|¡Ýa¸²¸Ç£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
£¨-¡Þ£¬1]
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²OµÄ·½³ÌΪx2+y2=2£¬PA£¬PBΪ¸ÃÔ²µÄÁ½ÌõÇÐÏߣ¬A£¬BΪÁ½Çе㣬Ôò
PA
PB
µÄ×îСֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸