精英家教网 > 高中数学 > 题目详情
已知过点A(-1,1)的直线与椭圆
x2
8
+
y2
4
=1交于点B、C,当直线l绕点A(-1,1)旋转时,求弦BC中点M的轨迹方程.
分析:利用点差法来求弦的中点问题.可先设弦BC的中点M以及B,C点的坐标,把直线BC斜率分别用A点坐标以及M点坐标表示,化简即可得含x,y的方程,即弦BC的中点M的轨迹方程.
解答:解:设B(x1,y1)、C(x2,y2)、M(x,y),直线BC:y-1=k(x+1)
由于椭圆
x2
8
+
y2
4
=1可化为:x2+2y2=8.
则x12+2y12=8①,x22+2y22=8②
①-②得:(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0
整理得:
2(y1+y2)
x1+x2
y1-y2
x1-x2
=-1
化简得:k=
y1-y2
x1-x2
=-
2y
x
,代入y-1=k(x+1),
整理得:x2+2y2+x-2y=0,即为BC的中点M的轨迹方程.
点评:本题主要考查了点差法求弦中点轨迹方程问题,属于圆锥曲线的常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点A(1,1)且斜率为-m(m>0)的直线l与x轴、y轴分别交于P、Q,过P、Q作直线2x+y=0的垂线,垂足为R、S,求四边形PRSQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1相交于M,N两点.
(1)求实数k的取值范围;
(2)设M(x1,y1);N(x2,y2),若O为坐标原点,且x1•x2+y1y2=12,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省德州市武城二中高一(上)期末数学检测7(解析版) 题型:选择题

已知过点P(1,1)作直线l与两坐标轴正半轴相交,所围成的三角形面积为2,则这样的直线l有( )
A.1条
B.2条
C.3条
D.0条

查看答案和解析>>

科目:高中数学 来源:0103 期中题 题型:解答题

已知过点A(1,1)且斜率为-m(m>0)的直线与x,y轴分别交于P,Q两点,分别过P,Q作直线
2x+y=0的垂线,垂足分别为R,S,求四边形PRSQ的面积的最小值。

查看答案和解析>>

同步练习册答案