精英家教网 > 高中数学 > 题目详情
直线
3
(t2+1)x+2ty+1=0
的倾斜角的范围是(  )
分析:通过分类讨论直线的斜率是否存在,利用基本不等式求出直线的斜率的范围,然后求解在的倾斜角的范围.
解答:解:因为
3
(t2+1)x+2ty+1=0
,所以当t=0时,直线的斜率不存在,直线的倾斜角为:
π
2

当直线的斜率存在时,t≠0,直线的斜率k=-
3
(t2+1)
2t
=-
3
2
(t+
1
t
)

当t>0时,
3
2
(t+
1
t
)≥
3
,直线的倾斜角的范围是(
π
2
3
],
当t<0时,
3
2
(t+
1
t
)≤-
3
,直线的倾斜角的范围是[
π
3
π
2
),
综上,直线的倾斜角的范围是:[
π
3
3
]

故选C.
点评:本题考查直线的斜率与倾斜角的关系,考查分类讨论思想的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,试求出所有满足条件的点P的坐标;
(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:①用cardA表示有限集A的元素个数,则A⊆B?cardA≤cardB;
②函数f(x)满足对任意x都有f(x+3)=f(x-3)?f(x)的图象关于直线x=3对称;
③在△ABC中,A,B,C为三个内角,则A>B?cos2A<cos2B;
④λ1,λ2,t1,t2为实数,若
e1
e2
不共线,则(λ1
e1
+λ2
e2
)∥(t1
e1
+t2
e2
)?λ1t2-λ2t1=0

其中正确命题的个数有(  )

查看答案和解析>>

科目:高中数学 来源:广东省普宁市第一中学2006-2007高三第三次周日考试数学(理科)试题 题型:044

解答题

已知二次函数f(x)=ax2+bx+c,满足f(0)=f(x)=0,且f(x)的最小值是

(1)

求f(x)的解析式;

(2)

设直线l∶y=t2-t(其中0<t<,t为常数),若直线l与f(x)的图象以及y轴这二条直线和一条曲线所围成封闭图形的面积是S1(t),直线l与f(x)的图象以及直线这二条直线和一条曲线所围成封闭图形的面积是S2(t),已知,当g(t)取最小值时,求t的值.

(3)

已知m≥0,n≥0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,直线l1:y=-t2+8t(其中0≤t≤2,t为常数);l2:x=2,若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.

(1)求a、b、c的值;

(2)求阴影面积S关于t的函数S(t)的解析式;

(3)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案