精英家教网 > 高中数学 > 题目详情
用向量法求y=3sinx+4cosx的最值.

解析:构造向量a=(3,4),b=(sinx,cosx),则a·b=3sinx+4cosx.因为|a·b|≤|a|·|b|,所以|3sinx+4cosx|≤·.

故y的最大值为5,最小值为-5.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)如图,D是Rt△ABC的斜边AB上的中点,E和F分别在边AC和BC上,且ED⊥FD,求证:EF2=AE2+BF2(EF2表示线段EF长度的平方)(尝试用向量法证明)
(2)已知函数f(x)=x3-3x图象上一点P(1,-2),过点P作直线l与y=f(x)图象相切,但切点异于点P,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2cos(
π
2
+x),-1)
OQ
=(-sin(
π
2
-x),cos2x)
f(x)=
OP
OQ
.a、b、c是锐角三角形△ABC角A、B、C的对边,且f(A)=1,b+c=5+3
2
a=
13

(1)在所给坐标系下用“五点法”作出y=f(x)(x∈[0,π])的图象;
(2)求角A;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省淮南二中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

(1)如图,D是Rt△ABC的斜边AB上的中点,E和F分别在边AC和BC上,且ED⊥FD,求证:EF2=AE2+BF2(EF2表示线段EF长度的平方)(尝试用向量法证明)
(2)已知函数f(x)=x3-3x图象上一点P(1,-2),过点P作直线l与y=f(x)图象相切,但切点异于点P,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省淮南二中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

(1)如图,D是Rt△ABC的斜边AB上的中点,E和F分别在边AC和BC上,且ED⊥FD,求证:EF2=AE2+BF2(EF2表示线段EF长度的平方)(尝试用向量法证明)
(2)已知函数f(x)=x3-3x图象上一点P(1,-2),过点P作直线l与y=f(x)图象相切,但切点异于点P,求直线l的方程.

查看答案和解析>>

同步练习册答案