精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
3
sin(x-
π
3
),x∈[0,
π
2
],那么这个函数的值域为
 
考点:三角函数的最值
专题:三角函数的求值
分析:根据x的范围求得x-
π
3
的范围,再根据正弦函数的定义域和值域求得该函数的值域.
解答: 解:由于x∈[0,
π
2
],∴x-
π
3
∈[-
π
3
π
6
],故当x-
π
3
=-
π
3
时,函数取得最小值为-
3
3

当x-
π
3
=
π
6
时,函数取得最大值为
1
3
,故函数的值域为[-
3
3
1
3
]

故答案为:[-
3
3
1
3
]
点评:本题主要考查正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线C的方程为
x2
m2
+
y2
n2
=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=“方程
x2
m2
+
y2
n2
=1表示焦点在x轴上的椭圆”,那么P(A)=(  )
A、
5
12
B、
7
12
C、
1
2
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在河岸 ac一侧测量河的宽度,测量以下四组数据,较适宜的是(  ) 
A、c,α,γ
B、c,b,α
C、c,a,β
D、b,α,γ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(0,1),C(2,3),动点P满足|
PC
|=1,过点M且斜率为k的直线l与动点P的轨迹相交于A、B两点.
(1)求动点P的轨迹方程;
(2)求实数k的取值范围;
(3)求证:
MA
MB
为定值;
(4)若O为坐标原点,且
OA
OB
=12,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l:y=kx+
3
(k>0)与椭圆相交于P,Q两点,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Г的方程为
x2
a2
+
y2
b2
=1(a>b>0)点A,B分别为Г上的两个动点,O为坐标原点,且OA⊥OB;其中OA,OB称为椭圆的一条半径.
(1)求证:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值为
4a2b2
a2+b2

(2)过点O作OH⊥AB于H,求证:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2

(3)将(1)(2)的结论推广至双曲线,结论是否依然成立,若成立,证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n2+n
2
,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2 an+an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-3,3]上的奇函数,且f(x)在(0,1]是指数函数,在[1,3]上是二次函数,当1≤x≤3时f(x)≤f(2)=
3
2
,f(3)=
1
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在0°~360°之间,与角-150°终边相同的角是(  )
A、150°B、-30°
C、30°D、210°

查看答案和解析>>

同步练习册答案