精英家教网 > 高中数学 > 题目详情

设函数f(x) 是定义在R上的偶函数,且对任意的x ÎR恒有f(x+1)=-f(x),已知当x Î[0,1]时,f(x)=3x.则                                                     

① 2是f(x)的周期;         ② 函数f(x)的最大值为1,最小值为0;

③ 函数f(x)在(2,3)上是增函数;     ④ 直线x=2是函数f(x)图象的一条对称轴.

其中所有正确命题的序号是     .

 

【答案】

①③④

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
1
lgx
在(0,+∞)
是减函数;
②在平面上,到定点(2,-1)的距离与到定直线3x-4y-10=0距离相等的点的轨迹是抛物线;
③设函数f(x)=cos(
3
x+
π
6
)
,则f(x)+f'(x)是奇函数;
④双曲线
x2
25
-
y2
16
=1
的一个焦点到渐近线的距离是5;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源:2009届高考数学二轮专题突破训练(概率) 题型:044

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.

(1)求y=f(x)的解析式;

(2)证明:曲线y=f(x)的图像是一个中心对称图形,并求其对称中心;

(3)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试宁夏卷数学理科 题型:044

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(0,f(2))处的切线方程为y=3.

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线yx所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。

查看答案和解析>>

同步练习册答案