已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围;
(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.
解 : f′(x)= e x-a.
(1)若a≤0,f′(x)= ex-a≥0恒成立,即f(x)在R上递增.
若a>0, ex-a≥0,∴ex≥a,x≥lna.
∴f(x)的递增区间为(lna,+∞).
(2)∵f(x)在R内单调递增,∴f′(x)≥0在R上恒成立.
∴ex-a≥0,即a≤ex在R上恒成立.
∴a≤(ex)min,又∵ex>0,∴a≤0.
(3)由题意知ex-a≤0在(-∞,0]上恒成立.
∴a≥ex在(-∞,0]上恒成立.
∵ex在(-∞,0]上为增函数.
∴x=0时,ex最大为1.∴a≥1.
同理可知ex-a≥0在[0,+∞)上恒成立.
∴a≤ex在[0,+∞)上恒成立.
∴a≤1,∴a=1.
科目:高中数学 来源: 题型:
| ex-e-x |
| 2 |
| A、奇函数,在R上为增函数 |
| B、偶函数,在R上为增函数 |
| C、奇函数,在R上为减函数 |
| D、偶函数,在R上为减函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com