精英家教网 > 高中数学 > 题目详情
8.函数$f(x)=ln(4+2x)+\sqrt{81-{3^x}}$的定义域为(-2,4].

分析 由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{4+2x>0}\\{81-{3}^{x}≥0}\end{array}\right.$,解得-2<x≤4.
∴函数$f(x)=ln(4+2x)+\sqrt{81-{3^x}}$的定义域为(-2,4].
故答案为:(-2,4].

点评 本题考查函数的定义域及其求法,训练了指数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-1|,x∈R,
(1)解不等式f(x)<x+1;
(2)若对于x,y∈R,有|x-y-1|≤$\frac{1}{3}$,|2y+1|≤$\frac{1}{6}$,求证:f(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线l经过点P(1,-1),且它的倾斜角是直线x-y+2=0的倾斜角的2倍,那么直线l的方程是x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数f(x)=cos2x的图象再向右平移$\frac{π}{4}$个单位长度,得到函数g(x)的图象,则y=g(x)图象的一条对称轴是直线(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{4}$D.x=$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知全集U={1,2,3,4},集合A={1,4},B={2,4},则A∩∁UB={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|-2≤x≤3},B={x|1<x<6}.
(1)求A∪B;
(2)设C={x|x∈A∩B,且x∈Z},写出集合C的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知不等式ax2+bx-1>0解集为{x|3<x<4},解关于x的不等式$\frac{bx-1}{ax-1}≥0$;
(2)已知函数$f(x)=x+\frac{16}{x-2},x≠2$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z满足 z(-1+i)=2-i,则z=(  )
A.$\frac{3}{2}-\frac{1}{2}i$B.$-\frac{3}{2}+\frac{1}{2}i$C.$\frac{3}{2}+\frac{1}{2}i$D.$-\frac{3}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x≤-2或x>1}关于x的不等式2a+x>22x(a∈R)的解集为B.
(1)当a=1时,求解集B;
(2)如果A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案