精英家教网 > 高中数学 > 题目详情

求圆心为(1,1)并且与直线相切的圆的方程。

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.
(1)问圆心E到直线CD的距离是否为定值,若是,求出定值;若不是,说明理由;
(2)问当a取何值时,圆E与直线CD相切,并求出此时⊙E的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选修4-4:坐标系与参数方程]
已知圆C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程为
x=1+
1
5
t
y=a+
2
5
t
(t为参数).若直线l与圆C相交于P,Q两点,且PQ=
4
5
5

(Ⅰ)求圆C的直角坐标方程,并求出圆心坐标和半径;
(Ⅱ)求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)A.[选修4-1:几何证明选讲]
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.
求证:∠E=∠C.
B.[选修4-2:矩阵与变换]
已知矩阵A的逆矩阵A-1=
-
1
4
3
4
1
2
-
1
2
,求矩阵A的特征值.
C.[选修4-4:坐标系与参数方程]
在极坐标中,已知圆C经过点P(
2
π
4
),圆心为直线ρsin(θ-
π
3
)=-
3
2
与极轴的交点,求圆C的极坐标方程.
D.[选修4-5:不等式选讲]
已知实数x,y满足:|x+y|<
1
3
,|2x-y|<
1
6
,求证:|y|<
5
18

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)某广场二雕塑造型结构如图所示,最上层是呈水平状态的圆环且圆心为O,其半径为2m,通过金厲杆BC,CA1,CA2,…,CAn支撑在地面B处(BC垂直于水平面).A1,A2,A3,…,An是圆环上的n等分点,圆环所在的水平面距地面1Om,设金属杆CA1,CA2,…,CAn所在直线与圆环所在水平面所成的角都为θ(圓环及金厲杆均不计粗细)
(1)当θ为60°且n=3时,求金厲杆BC,CA1,CA2,CA3的总长?
(2)当θ变化,n一定时,为美观与安全起见,要求金属杆BC,CA1,CA2,…,CAn的总长最短,此时θ的正弦值是多少?并由此说明n越大,C点的位置将会上移还是下移.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省衡阳市高三(下)第一次联考数学试卷(理科)(解析版) 题型:解答题

某广场二雕塑造型结构如图所示,最上层是呈水平状态的圆环且圆心为O,其半径为2m,通过金厲杆BC,CA1,CA2,…,CAn支撑在地面B处(BC垂直于水平面).A1,A2,A3,…,An是圆环上的n等分点,圆环所在的水平面距地面1Om,设金属杆CA1,CA2,…,CAn所在直线与圆环所在水平面所成的角都为θ(圓环及金厲杆均不计粗细)
(1)当θ为60°且n=3时,求金厲杆BC,CA1,CA2,CA3的总长?
(2)当θ变化,n一定时,为美观与安全起见,要求金属杆BC,CA1,CA2,…,CAn的总长最短,此时θ的正弦值是多少?并由此说明n越大,C点的位置将会上移还是下移.

查看答案和解析>>

同步练习册答案