精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=2x3+4x,且a+b<0,b+c<0,c+a<0,则f(a)+f(b)+f(c)的值是(  )
A.正数B.负数C.D.不能确定符号

分析 由f′(x)=6x2+4>0,知f(x)是增函数,由f(0)=0,f(-x)=-2x3-4x=-f(x),能求出f(a)+f(b)+f(c)的符号.

解答 解:∵函数f(x)=2x3+4x,且a+b<0,b+c<0,c+a<0,
∴f′(x)=6x2+4>0,
∴f(x)是增函数,
f(0)=0,
f(-x)=-2x3-4x=-f(x),
∴f(a)+f(b)<f(a)+f(-a)=0,
f(c+f(a)<f(c)+f(-c)=0,
f(b)+f(c)<f(b)+f(-b)=0,
∴f(a)+f(b)+f(c)<0.
故选:B.

点评 本题考查函数值的符号的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x,那么,不等式f(x+2)<5的解集是(-7,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.炮兵习惯于把周角的$\frac{1}{6000}$作为度量角的单位,称为“密位“,1°及1弧度分别等于多少密位?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a∈R,函数$f(x)=\frac{2}{x}+alnx$.
(Ⅰ)若函数f(x)在(0,2)上递减,求实数a的取值范围;
(Ⅱ)当a>0时,求f(x)的最小值g(a)的最大值;
(Ⅲ)设h(x)=f(x)+|(a-2)x|,x∈[1,+∞),求证:h(x)≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}的前n项和为Sn,a1=1,且S1,2S2,3S3成等差数列.
(1)求数列{an}的通项公式;
(2)设$\frac{1}{b_n}={log_3}{a_{n+1}}•lo{g_3}{a_{n+2}}$求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(x)=x8+3,求f(x)除以x+1所得的余数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.向量$\overrightarrow{a}$=(4cosα,sinα),$\overrightarrow{b}$=(sinβ,4cosβ),$\overrightarrow{c}$=(cosβ,-4sinβ)(α、β∈R且α、β、α+β均不等于$\frac{π}{2}+kπ,k∈Z$).
(Ⅰ)求|$\overrightarrow{b}$+$\overrightarrow{c}$|的最大值;
(Ⅱ)当$\overrightarrow{a}$∥$\overrightarrow{b}$ 且 $\overrightarrow{a}$⊥($\overrightarrow{b}$-2$\overrightarrow{c}$)时,求tanα+tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2<4,x∈R},B={x|(x+3)(x-1)>0},则A∩(∁RB)=(  )
A.(-∞,-3)∪(1,2)B.[-3,1]C.(1,2)D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正方体ABCD-A1B1C1D1,6个面的中心分别为E,F,G,H,I,J,甲从这6个点钟任选两个点连成直线,乙也从这6个点钟任选两个点连成直线,则所得的两条直线互相垂直的概率$\frac{1}{75}$.

查看答案和解析>>

同步练习册答案