设f(x)=
,且f(x)的图象过点(
)
(1)求f(x)表达式
(2)计算f(x)+f(1-x)
(3)试求f(
)+f(
)+f(
)+…+f(
)+f(
)的值
科目:高中数学 来源:江西省新建二中2010届高三上学期第一次月考数学文科试题 题型:013
设f(x)是定义在R上以6为周期的函数,f(x)在(0,3)内单调递减,且y=f(x)的图像关于直线x=3对称,则下面正确的结论是
A.f(1.5)<f(3.5)<f(6.5)
B.f(3.5)<f(1.5)<f(6.5)
C.f(6.5)<f(3.5)<f(1.5)
D.f(3.5)<f(6.5)<f(1.5)
查看答案和解析>>
科目:高中数学 来源:浙江省杭州市2010届高三科目教学质量检测数学理科试题 题型:044
设f(x)=λ1(
x2+x)+λ2x·3x(a,b∈R,a>0)
(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:
(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=
(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9
查看答案和解析>>
科目:高中数学 来源:河北省衡水中学2012届高三第三次调研考试数学理科试题(人教版) 人教版 题型:044
设f(x)=
,且f(x)=x有唯一解,f(x1)=
,xn+1=f(xn)(n∈N*).
(1)求实数a;
(2)求数列{xn}的通项公式;
(3)若an=
-4009,bn=
(n∈N*),求证:b1+b2+…+bn<n+1.
查看答案和解析>>
科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=
-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-
,又a<0,
∴a的取值范围是![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com