精英家教网 > 高中数学 > 题目详情

设f(x)=,且f(x)的图象过点()

(1)求f(x)表达式

(2)计算f(x)+f(1-x)

(3)试求f()+f()+f()+…+f()+f()的值

答案:
解析:

a=2,1;1005


练习册系列答案
相关习题

科目:高中数学 来源:江西省新建二中2010届高三上学期第一次月考数学文科试题 题型:013

设f(x)是定义在R上以6为周期的函数,f(x)在(0,3)内单调递减,且y=f(x)的图像关于直线x=3对称,则下面正确的结论是

[  ]

A.f(1.5)<f(3.5)<f(6.5)

B.f(3.5)<f(1.5)<f(6.5)

C.f(6.5)<f(3.5)<f(1.5)

D.f(3.5)<f(6.5)<f(1.5)

查看答案和解析>>

科目:高中数学 来源:浙江省杭州市2010届高三科目教学质量检测数学理科试题 题型:044

设f(x)=λ1(x2+x)+λ2x·3x(a,b∈R,a>0)

(1)当λ1=1,λ2=0时,设x1x2f(x)的两个极值点,

①如果x1<1<x2<2,求证:(-1)>3;

②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=(x)+2(xx2)的最小值为h(a),求h(a)的最大值.

(2)当λ1=0,λ2=1时,

①求函数yf(x)-3(ln3+1)x的最小值.

②对于任意的实数abc,当abc=3时,求证3aa+3bb+3cc≥9

查看答案和解析>>

科目:高中数学 来源:河北省衡水中学2012届高三第三次调研考试数学理科试题(人教版) 人教版 题型:044

设f(x)=,且f(x)=x有唯一解,f(x1)=,xn+1=f(xn)(n∈N*).

(1)求实数a

(2)求数列{xn}的通项公式;

(3)若an-4009,bn(n∈N*),求证:b1+b2+…+bn<n+1.

查看答案和解析>>

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

同步练习册答案