精英家教网 > 高中数学 > 题目详情
20.$\frac{1}{2}$log36-$lo{g}_{3}\sqrt{2}$=$\frac{1}{2}$.

分析 直接利用对数的运算法则化简求解即可.

解答 解:$\frac{1}{2}$log36-$lo{g}_{3}\sqrt{2}$
=$lo{g}_{3}\sqrt{6}$-$lo{g}_{3}\sqrt{2}$
=$lo{g}_{3}\sqrt{3}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查对数的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合P={x|x2-x≤0},M={0,1,3,4},则集合P∩M中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆台的轴与母线所在直线的夹角为45°,若上底面的半径为1,高为1,求圆台的底面半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,则(cosθ+3)(sinθ+1)的值为(  )
A.6B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$π<α<\frac{3π}{2}$,$\sqrt{\frac{1-cosα}{1+cosα}}+\sqrt{\frac{1+cosα}{1-cosα}}$的化简结果为(  )
A.$\frac{2}{tanα}$B.-$\frac{2}{tanα}$C.$\frac{2}{sinα}$D.-$\frac{2}{sinα}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=(a-1)4x+2x+3.
(1)当a=$\frac{1}{2}$时,求函数f(x)在[-1,3]的最值.
(2)当x∈(-1,3),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=2asinxcosx+2cos2x,且f($\frac{π}{6}$)=3.
(1)求实数a的值和最小正周期;
(2)当x∈(-$\frac{π}{4}$,$\frac{π}{4}$),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,P(x,y)为椭圆C在第一象限上一点,A,B为椭圆与x轴正半轴的交点,y轴正半轴的交点.
(1)求x+2y的最大值;
(2)M(k,0)(k>0),求PM的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若点(4,tanθ)在函数y=log2x的图象上,则2cos2θ=(  )
A.$\frac{2}{5}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案