(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(理)已知椭圆
的一个焦点为
,点
在椭圆
上,点
满足
(其中
为坐标原点),过点
作一直线交椭圆于
、
两点 .
(1)求椭圆
的方程;
(2)求
面积的最大值;
(3)设点
为点
关于
轴的对称点,判断
与
的位置关系,并说明理由.
(1)
;(2)
;(3)
与
共线。
【解析】
试题分析:解:(1)由
,得
2分
a2=2,b2=1
所以,椭圆方程为
.
4分
(2)由
,得(m2+2)y2+2my-1=0,
设P(x1,y1),Q(x2,y2),由条件可知,点
.
=
|FT||y1-y2|=
=
6分
令t=
,则t
,
则
=
=
,当且仅当t=
,即m=0
(此时PQ垂直于x轴)时等号成立,所以
的最大值是
. 10分
(3)
与
共线
11分
(x1,-y1),
=(x2-x1,y2+y1),
=(x2-2,y2)
12分
由(x2-x1)y2-(x2-2)(y1+y2)
=-x1y2-x2y1+2(y1+y2)
=-(my1+1)y2-(my2+1)y1+2(y1+y2)
=-2my1y2+(y1+y2)
=-2m
+![]()
=0,所以,
与
共线
16分
考点:椭圆的简单性质;椭圆的标准方程;直线与椭圆的综合应用。
点评:有关直线与椭圆的综合应用,我们通常用设而不求的方法,在求解过程中一般采取步骤为:设点→联立方程→消元→韦达定理。
科目:高中数学 来源: 题型:
| a1+2a2+3a3+…+nan |
| 1+2+3+…+n |
| n(n+1)(2n+1) |
| 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知函数
(
,
、
是常数,且
),对定义域内任意
(
、
且
),恒有
成立.
(1)求函数
的解析式,并写出函数的定义域;
(2)求
的取值范围,使得
.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)已知数列
的前
项和为
,且
.数列
中,
,
.(1)求数列
的通项公式;(2)若存在常数
使数列
是等比数列,求数列
的通项公式;(3)求证:①
;②
.
查看答案和解析>>
科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.![]()
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)
已知函数 ![]()
(1)判断并证明
在
上的单调性;
(2)若存在
,使
,则称
为函数
的不动点,现已知该函数有且仅有一个不动点,求
的值;
(3)若
在
上恒成立 , 求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com