精英家教网 > 高中数学 > 题目详情
从双曲线=1的左焦点F引圆x2 + y2 = 3的切线FP交双曲线右支于点P,T为切点,M为线段FP的中点,O为坐标原点,则| MO | – | MT | 等于              
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图:在△ABC中,=, =,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设过点的直线与椭圆相交于AB两个不同的点,且.记O为坐标原点.求的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设点F(0,2),曲线C上任意一点M(x,y)满足以线段FM为直径的圆与x 轴相切.
(1)求曲线C的方程;
(2)设过点Q(0,-2)的直线l与曲线C交于A,B两点,问|FA|,|AB|,|FB|能否成等差数列?若能,求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形。
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P。证明:为定值。
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆与双曲线有相同的焦点,且椭圆过点
(1)求椭圆方程; 
(2)直线过点交椭圆于两点,且,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

:如图所示,ACAB分别是圆O的切线,BC为切点,OC = 3,AB = 4,延长OAD点,则△ABD的面积是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线上一点,是它的左、右焦点,若,则双曲线的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,则该直线的倾斜角为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案