精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,2an+1=(1+
1
n
)2an

(Ⅰ)求{an}的通项公式;
(Ⅱ)令bn=an+1-
1
2
an
,求数列{bn}的前n项和Sn
(Ⅲ)求数列{an}的前n项和Tn
分析:(Ⅰ)由题设条件得
an+1
(n+1)2
=
1
2
an
n2
,由此可知an=
n2
2n-1

(Ⅱ)由题设条件知Sn=
3
2
+
5
22
++
2n+1
2n
1
2
Sn=
3
22
+
5
23
++
2n-1
2n
+
2n+1
2n+1
,再由错位相减得
1
2
Sn=
3
2
+2(
1
22
+
1
23
++
1
2n
)-
2n+1
2n+1
,由此可知Sn=5-
2n+5
2n

(Ⅲ)由Sn=(a2+a3++an+1)-
1
2
(a1+a2++an)
Tn-a1+an+1-
1
2
Tn=Sn
.由此可知Tn=2Sn+2a1-2an+1=12-
n2+4n+6
2n-1
解答:解:(Ⅰ)由条件得
an+1
(n+1)2
=
1
2
an
n2
,又n=1时,
an
n2
=1

故数列{
an
n2
}
构成首项为1,公式为
1
2
的等比数列.从而
an
n2
=
1
2n-1
,即an=
n2
2n-1

(Ⅱ)由bn=
(n+1)2
2n
-
n2
2n
=
2n+1
2n
Sn=
3
2
+
5
22
+…+
2n+1
2n
1
2
Sn=
3
22
+
5
23
+…+
2n-1
2n
+
2n+1
2n+1

两式相减得:
1
2
Sn=
3
2
+2(
1
22
+
1
23
+…+
1
2n
)-
2n+1
2n+1
,所以Sn=5-
2n+5
2n

(Ⅲ)由Sn=(a2+a3+…+an+1)-
1
2
(a1+a2+…+an)
Tn-a1+an+1-
1
2
Tn=Sn

所以Tn=2Sn+2a1-2an+1=12-
n2+4n+6
2n-1
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案